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Nilpotent algebras
and affinely homogeneous surfaces

By Gregor FelsandWilhelm Kaup

1. Introduction

This paper is devoted to the investigation of finite dimensional commutative nilpotent
(associative) algebrasN over an arbitrary base fieldIF of characteristic zero. Our main atten-
tion is focused on those algebras which have 1-dimensional annihilator since these algebras
naturally occur in connection with various, geometricallymotivated problems. The unital ex-
tensionsN 0 = IF ⊕N of such algebras are exactly the Gorenstein algebras of finite positive
vector space dimension overIF.

There is only very sparse literature concerning the structure of general nilpotent com-
mutative algebras. For example, every such algebra has a realization as a subalgebra of some
End(V ), V a vector space overIF, which is maximal with respect to the property that it con-
sists of nilpotent and commuting endomorphisms. This meansthat abstractly given nilpotent
algebras and nilpotent subalgebras of endomorphism algebras are essentially the same. While
the structure and classification of maximal commutative algebras consisting of semisimple en-
domorphisms (Cartan subalgebras) is very well understood,there is only little known about the
general structure, not to mention a classification, of its nilpotent counterpart (for an approach
in terms of Macaulay’s inverse systems compare with [3]). This is a bit surprising, as such
nilpotent algebras are quite ubiquitous objects which occur in various areas of mathematics.
One reason is certainly that the theory of nilpotent algebras is more involved than the theory
of Cartan subalgebras, due to the lack of rigidity properties and other obvious visible structure.
Since the standard tools from the Cartan theory such as the root theory cannot be applied in
the nilpotent case, the desire arises for appropriate objects which help to understand nilpotent
commutative algebras. One of the purposes of this paper is todevelop such tools.

From a purely algebraic point of view nilpotent commutativealgebras are building blocks
for general commutative algebras which, for instance, seems to be very important for quantum
physics. As already mentioned, commutative nilpotent algebras naturally arise in the context of
several geometrically motivated questions as they often serve as invariants attached to certain
geometric objects. Our interest in commutative nilpotent algebras also originates from geome-
try. To be more specific, we mention two types of geometric problems which provide us with
commutative nilpotent algebras which in turn encode some ofthe geometric structure of the
original questions.

In Cauchy-Riemann geometry there is the question under which conditions certain CR-
manifolds are (locally) equivalent to tube manifoldsS × iIRn ⊂ IRn ⊕ iIRn = Cn and how
many different tube realizations do exist. In [5] we show that this geometric problem (in the
case of non-degenerate hyperquadrics) can be reduced to theclassification of realandcomplex
commutative nilpotent subalgebras with 1-dimensional annihilator.

Another type of problems arises from the study of isolated hypersurface singularities
and their versal deformations: Leth be (the germ of) a holomorphic function, defined in a
neighbourhoodU of 0 ∈ Cn, i.e. , h ∈ On := C{z1, ... , zn} such that the hypersurface
{h = 0} has an isolated singularity in0. This implies thatgradh : U → Cn is a finite map,
and consequently

On/h∗(On)·On = On/J(h)

is a finite dimensional local algebra. Here,J(h) :=
(

∂h
∂z1

, ... , ∂h
∂zn

)
denotes theJacobi idealof h

in On. As a consequence of Nakayama’s Lemma its maximal ideal is a (commutative) nilpotent
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2 Nilpotent algebras

algebra. The full algebra serves as parameter space for the universal deformation of the isolated
singularity ofh. Consequently also the maximal ideal of the Tjurina algebraOn/(h, J(h)) is
nilpotent and its algebra structure turns out to determine the original isolated singularity up to
a biholomorphic equivalence, see e.g. [12] for further details.

For short, we call from now on a finite dimensional commutative nilpotent algebra over
IF with 1-dimensional annihilator simply anadmissible algebra. In this paper we give a con-
struction of objects naturally associated with an admissible algebraN , encoding sufficient
information to recover the original algebra. These objectsseem to be easier to deal with than
the admissible algebras themselves and also serve as convenient invariants allowing the ex-
plicit verification of whether two admissible algebras are isomorphic. These objects are cer-
tain classes of smooth subvarieties ofN ∼= IFn+1 as well as certain classes of polynomials,
which we callnil-polynomials. These polynomials are closely related to the aforementioned
smooth subvarieties. Roughly speaking the nil-polynomials are certain truncated exponential
series (here the nilpotency is crucial), concatenated witha linear functional, which essentially
is nothing but a linear projection onto the annihilator ofN . The constant and linear parts of
every nil-polynomialp ∈ IF[X1, . . . ,Xn] vanish, but the quadratic part ofp is non-degenerate.
Up to isomorphism the algebra structure onN can be recovered from the polynomialp. Even
more is true, as the quadratic plus cubic term alone suffice to determine the structure ofN , and
in turn the entire nil-polynomialp. Unlessn = 0, its degree coincides with the nil-index ofN ,
i.e., the maximal numberν with N ν 6= 0.

Let A be the annihilator ofN and K a hyperplane inN transversal toA, that is,
N = K ⊕ A. The smooth variety associated withN (and depending on linear isomorphisms
K ∼= IFn, A ∼= IF) is simply the graphS ⊂ IFn+1 of the corresponding nil-polynomial
p : IFn → IF. We call every suchS a nil-hypersurface.Among other things we prove that
two admissible algebrasN , Ñ with nil-hypersurfacesS, S̃ are isomorphic as algebras if and
only if S, S̃ are affinely equivalent. For an even stronger statement see Theorem4.2. We also
show that affine equivalence forS, S̃ can be replaced by linear equivalence if and only if the
nil-hypersurfaceS is affinely homogeneous. Linear equivalence gives a stronger and computa-
tionally more convenient condition for the isomorphy of thealgebrasN , Ñ . On the polynomial
level it means that for the corresponding nil-polynomialsp, p̃ there is ag ∈ GL(n, IF) such
that p̃ andp ◦ g differ by a constant factor fromIF∗. We further establish a duality between
a fixed nil-hypersurfaceS of N and the parameter spaceΣ(N ) of all such nil-hypersurfaces.
Taking this duality a step further, we show that the action ofthe affine groupAff(S) on S
is equivariantly isomorphic to the action of the algebra automorphism groupAut(N ) on the
affine spaceΠ(N ) of all projections with range the annihilator ofN .

As already mentioned, affine homogeneity of an associated nil-hypersurfaceS of N
makes computations more efficient. However, the question for which admissible algebrasN
the nil-hypersurfaceS is affinely homogeneous is quite involved. Only recently we were able
to give a satisfactory answer to this question: While the nil-hypersurface of every admissi-
ble algebra of nil-index smaller than 5 is automatically affinely homogeneous, there are non-
homogenous counterexamples starting with nil-index 5. In the case however, whereN admits
aZ+-gradation, every corresponding nil-hypersurfaceS is affinely homogeneous.

Our paper is organized as follows: In Section 2 we fix notationand state some prelim-
inaries. A simple example is given, which indicates why in the rest of the paper we stick to
nilpotent algebras that arecommutative. In Section 3 we introduce the notion of a nil-surface,
which is a smooth algebraic varietySπ, associated with a given nilpotent commutative algebra
N , however depending also on a projectionπ ∈ End(N ). Further we discuss various notions
of gradations for nilpotent commutative algebras. The mainresult of the section holds forN
admitting certain types of generalized gradations and compatible projectionsπ: In this caseSπ

is affinely homogeneous. A special version of this result for base field IF ∈ {IR,C} is already
contained in [5] and later also was used in [6] forIF = C, compare also with [8]. In Section
4 we restrict our attention toadmissible algebrasalgebrasN . From that point on we only con-
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sideradmissible projectionsπ on N which means that the range ofπ is the (1-dimensional)
annihilator ofN . The main result of this section is, roughly speaking, that the algebra struc-
ture ofN only depends on the hypersurfaceSπ ⊂ N , and ‘essential’ properties ofSπ do not
depend on the admissible projectionπ. Another statement is that the affine groupAff(Sπ) is
canonically isomorphic to the algebra automorphism groupAut(N ). The main result of the
section, Theorem 4.2, is a generalization and extension of aresult in [6] from base fieldC
to arbitraryIF. The proof in [6] is of analytic nature and we get the extension by applying a
Lefschetz principle type argument. We also investigate functorial properties of the spaceΣ(N )
of all nil-hypersurfaces and of the affine spaceΠ(N ) of all admissible projections, formulate
a duality statement between a memberS of Σ(N ) and the familyΣ(N ) itself and prove the
equivariant equivalence of the natural actions ofAut(N ) on Π(N ) and ofAff(S) on S. We
close the section with an infinitesimal analogon, more precisely, we show for every base field
of characteristic 0 that for any admissible algebraN with associated nil-hypersurfaceS ⊂ N
the derivation algebrader (N ) is isomorphic to the Lie algebraaff(S) of all affine transforma-
tionsN → N that are ‘tangent’ toS. In Section 5 we associate to every admissible algebra
N ∼= IFn+1 a class of mutually affinely equivalent polynomials inIF[x1, . . . , xn], callednil-
polynomials.The graphs of these polynomials are affinely equivalent toSπ. In Section 6 we
present for every admissibleN certain canonical decompositions and show: EveryN with
nil-index≤ 3 has a grading, and for everyN with nil-index≤ 4 everySπ is affinely homoge-
neous. Both bounds for the nil-index are sharp as will be shown by counterexamples in the last
section. We also show for every admissible algebraN thatder (N ) andAut(N ) have at least
dimensiondim(N/N 4). In Section 7 we give large classes of admissible algebras ofnil-index
3 and 4. It turns out in particular, that in every dimension≥ 7 for IF ∈ {IR,C} the number of
isomorphy classes of admissible algebras is uncountable infinite. We also get a classification
of all admissible algebras of nil-index 3. For the special case of algebraically closed base fields
this has already been achieved in [3] by completely different methods. In Section 8 we present
various counterexamples elaborated with computer aid. Among these we give an admissible
algebraN of dimension 23 and nil-index 5 such thatSπ is not affinely homogeneous.This
disproves the Conjecture at the end of [7], repeated and extended as Conjecture 2.4 in [8a].

One of the essential parts of the present paper is Theorem 3.2. For the special case of
admissiblealgebras it also occurs as Cor. 2.6 in [8a] together with the statement“We note
that Corollary 2.6 was obtained by W. Kaup approximately three months before this paper
was written”on page 3. This Corollary is essentially the same as Theorem 2.5 in [8a]. In later
versions such as [8b] any hint to our priority is missing.

2. Preliminaries

Throughout the paperIN is the set of allnon-negativeintegers whileZ+ is the semigroup
of all positiveintegers. Further,IF is an arbitrary but fixed field of characteristic 0. All algebras
in the following are defined overIF and are associative, but may have infinite dimension as
IF-vector spaces (at least in the first three sections). For every such algebraA, everyx ∈ A and
every integerk ≥ 1 we put

(2.1) x(k) :=
1

k!
xk and x(0) := 11 if A has a unit11 .

Also we denote for everyj ∈ Z
+ by

expj =

∞∑

k=j

T (k) ∈ IF[[T ]]

thej-truncated exponential series.Thenexp1◦ log1 = log1◦ exp1 = T for

log1 :=

∞∑

k=1

(−1)k+1

k
T k .
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2.2 Definition. For everyIF-algebraA define inductively the characteristic idealsAk ⊂ A by
A1 = A andAk+1 = 〈AAk〉IF. Also putA[0] = 0 andA[k] := {x ∈ A : xAk + Akx = 0}
for k > 0. ThenA is callednilpotentif Ak+1 = 0 for somek ≥ 0, and the minimalk with this
property is called thenil-index of A, that we denote byν = ν(A).

For nilpotentA with nil-index ν the inclusionAk ⊂ A[ν+1−k] is obvious for allk ≤ ν
as well asν = inf{k ≥ 0 : A[k] = A} . The idealAnn(A) := A[1], called theannihilatorof
A, plays a prominent role in the following. The annihilator coincides with thesocleof N , that
is, the sum of all minimal ideals.

Let N be a nilpotent algebra. From now on we always considerexp1, log1 : N → N
as polynomial mappings that are inverse to each other. Fix anarbitrary projectionπ = π2 ∈
End(N ). Then for the polynomial mapping

(2.3) f : N → N , f (x) := π(exp1 x) ,

(2.4) S = Sπ := f −1(0) = log1(ker π) ⊂ N

is a smooth algebraic subvariety of codimensionrank(π) containing the origin. We will be
mainly interested in the case where the annihilator ofN has dimension 1 and is the range
π(N ) of the projectionπ. ThenSπ is a hypersurface inN .

With Aff(N ) ∼= GL(N )⋉N we denote the group of all affine bijections ofN and by
Aff(S) := {g ∈ Aff(N ) : g(S) = S} the subgroup stabilizingS. Furthermore,GL(S) :=
{g ∈ GL(N ) : g(S) = S} is the isotropy subgroup ofAff(S) at the origin. We are interested
in cases whereS is affinely homogeneous, that is, the groupAff(S) acts transitively onS. This
is not always true: As a counterexample consider the matrix algebraT of all strictly upper
triangularn × n-matrices with coordinatesxjk for 1 ≤ j < k ≤ n and projectionπ given by
x 7→ x1n (after identifyingAnn(T ) ∼= IF in the obvious way). For instance, forn = 4 the
corresponding polynomialf is given by

f (x) =
1

6
x12x23x34 +

1

2
(x13x34 + x12x24) + x14

and it can be seen thatSπ is not affinely homogeneous. Notice that the quadratic part off is a
degeneratequadratic form onker(π), in contrast to the commutative case below.

In caseN is commutative, for every projectionπ onN with rangeN[1] = Ann(N ) it is
well known that for theN[1]-valued symmetric 2-form

(2.5) bπ : N ×N → N[1], (x, y) 7→ π(xy)

the radical{x ∈ N : bπ(x,N ) = 0} coincides withN[1] (for a simple proof compare e.g.
Prop. 2.1 in [6]). In particular, the formbπ is non-degenerate onπ−1(0) ∼= N/N[1]. TheN[1]-
valued polynomialf = π◦exp1 has a unique decompositionf =

∑
k≥1 f

[k] into homogeneous
componentsf [k] of degreek. Clearly,f [1] = π, f [2](x) = 1

2bπ(x, x) andf [ν](x) = x(ν) for all
x ∈ N andν = ν(N ).

From now on we assume thatN is a commutative nilpotentalgebra. In this paper we
investigate properties ofN , the polynomialsf and the corresponding nil-surfaces inN in a
fairly general algebraic setting. Our motivation however comes from complex geometry. For
instance – as already mentioned in the introduction – every real hyperquadricY in a complex
projective spaceIPn(C) gives rise to several (real and complex) commutative nilpotent algebras
N . Roughly speaking, the varietiesSπ in caseπ(N ) = N[1] occur as building blocks of bases
F ⊂ IRn in various tube representationsF × iIRn ⊂ Cn of the CR-manifoldY , compare [5].
Another source of commutative nilpotent algebras arises inthe context of isolated hypersurface
singularities, compare [6].
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With N 0 := IF·11 ⊕ N we denote theunital extensionof N , having11 as unit. This
notation has been chosen since then the canonical filtrationextends as

N 0 ⊃ N 1 ⊃ · · · N k ⊃ · · · with N jN k ⊂ N j+k ,

N 1 = N andN 0/N 1 ∼= IF. Clearly,N is the unique maximal ideal ofN 0. In caseN =
N1 ⊕ N2 ⊕ . . . ⊕ Nd for linear subspacesNk and a fixed integerd ≥ 1 we can write every
x ∈ N as tuplex = (x1, x2, . . . , xd) with xk ∈ Nk and then

exp(x) =
∑

µ∈INd

x(µ) ∈ 11 +N ⊂ N 0,

wherex(µ) := x
(µ1)
1 x

(µ2)
2 · · · x(µd)

d for all µ = (µ1, . . . , µd) and notation (2.1) is in force.

For every nilpotent algebraN theHilbert functionH = HN : IN → IN of N 0 is defined
byH(k) = dim(N k/N k+1). Clearly,H(0) = 1 ≤ H(ν) for ν := ν(N ), andH(k) = 0 for
k > ν. As usual, we writeH also as finite sequence{H(0),H(1), . . . ,H(ν)} and callH
symmetricif

(2.6) H(k) = H(ν − k) for all 0 ≤ k ≤ ν .

The Hilbert function is a rough invariant for nilpotent algebras that in general does not suffice
to distinguish two given algebras.

The complement ofN in N 0 is the maximal subgroup ofN 0. A special subgroup is the
unipotent groupU := 11+N . The exponential mappingexp : N → U is a group isomorphism
with inverselog , wherelog(11 + x) = log1(x) for all x ∈ N .

With Aut(N ) we denote the algebra automorphism group ofN . The endomorphism
algebraEnd(N ) endowed with the commutator product[λ, σ] = λσ − σλ is a Lie algebra
that we also denote bygl(N ). With der (N ) ⊂ gl (N ) we denote the Lie subalgebra of all
derivations. This is anN 0-leftmodule in an obvious way. For every nilpotentλ ∈ der (N ) the
operatorexp(λ) ∈ Aut(N ) is unipotent and conversely, every unipotentu ∈ Aut(N ) is of
this form.

Derivations ofN can be obtained in the following way: Letπ be a projection onN with
rangeN[1] and suppose thatλ ∈ End(N ) satisfiesλ(N ) ⊂ N[1] andλ(N 2) = 0. Then for
everya ∈ N[3] the operatorx 7→ ax+ π(ax) + λ(x) is in der (N ). This implies

(2.7) dim der (N ) ≥ (dimN/N 2) dimN[1] + dim (N[3]/N[2]) .

This estimate improves Theorem 5.4 in [10], which gives in case of algebraically closed base
field (and finite dimension) the lower bound (2.7) without thesummanddim (N[3]/N[2]). Also

dim der (N ) ≤ (dimN/N 2) dimN

always holds since every derivation ofN is uniquely determined by its values on a linear
subspaceL with N = L + N 2. The latter inequality is an equality e.g. ifN = m/mk with
k ≥ 2 andm ⊂ IF[T1, . . . , Tn] a maximal ideal.

3. Affinely homogeneous surfaces

For the rest of the paper we consider only nilpotent algebrasthat arecommutative.The
algebras of finite dimension of this type are precisely the maximal ideals of commutative Ar-
tinian local algebras.

It is well-known that the graphS := {(x, t) ∈ V ⊕ IF : t = q(x)} of every quadratic
form q on a vector spaceV is affinely homogeneous. On the other hand, for given vector space
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W of finite dimension, the vast majority of smooth algebraic hypersurfaces inW of degree> 2
is not affinely homogeneous. In fact, it is not easy to find an affinely homogeneous hypersurface
of higher degree at all. In this section we show that the nil-surfaces associated with a certain
class of commutative nilpotent algebrasN are affinely homogeneous varieties and can have
arbitrary high degrees. More precisely, we have a positive result in case whereN admits some
sort of aZ+-grading.

3.1 Definition. Let N be a nilpotent algebra,π a projection onN andN =
⊕

k∈Z+ Nk a
vector space decomposition. This decomposition is called

• agradingif
NjNk ⊂ Nj+k for all j, k > 0 ,

• aπ-gradingif
NjN ⊂

⊕

ℓ>j

Nℓ for all j > 0 and

π(Nj1Nj2 · · · Njr) ⊂ π(Nj1+j2+...+jr)

holds for every finite sequencej1, j2, . . . , jr in Z
+.

A quite special sort of grading is what usually is called acanonical grading:To every
nilpotent algebraN associate the graded algebra

gr(N ) :=
⊕

k>0

N k/N k+1 ,

where for everyj, k > 0 and everyx ∈ N j , y ∈ N k the product of the residue classes
x+N j+1 and y+N k+1 is xy+N j+k+1 . It is quite rare thatN andgr(N ) are isomorphic as
algebras. But if there exists an algebra isomorphismϕ : N → gr(N ), the gradingN =

⊕Nk

with Nk = ϕ−1(N k/N k+1) is called a canonical grading. ClearlyNk = 0 for all k > ν(N )
in this case.

Gradings andid-gradings onN coincide. Graded nilpotent commutative algebras ex-
ist for every nil-indexν – for instance the maximal ideal ofIF[X]/(Xν+1) has an obvious
canonical grading. On the other hand, not every nilpotent commutative algebra has a grading,
see Section 8 for counterexamples. In general, a gradable nilpotent algebraN may not have
a grading withN1 6= 0. A simple example with this phenomenon is the commutative algebra
N = IFx⊕ IFy ⊕ IFx2 ⊕ IFx3 with generatorsx, y satisfyingx4 = y3 = xy = x3 − y2 = 0.
Then we get a grading ofN if we denote the summands successively byN2, N3, N4, N6. No-
tice that thisN does not admit a canonical grading. Indeed, the annihilators ofN andgr(N )
have dimension 1 and 2 respectively.

What about affine homogeneity ofSπ for arbitrary commutative nilpotent algebrasN
andN[1]-ranged projectionsπ? For some time the answer of this question was beyond our
reach as all our attempts to prove it for general commutativenilpotent algebras (even when
restricted to the special casedim(N[1]) = 1) failed in case of nil-index≥ 5. However, contrary
to the expectation (expressed as conjecture in [7], [8a]) counterexamples do exist. Anticipating
the answer, which will be extensively discussed in Section 8, we have:

• There exist commutative nilpotent algebrasN , such thatSπ is not affinely homogeneous
(any such algebra cannot be graded).

• There exist commutative nilpotent algebrasN without a grading but still with affinely ho-
mogeneousSπ.

Now we resume our investigation by proving the main result ofthis section. For every
pair of vector spacesV,W the affine groupAff(V ) acts from the right on the space of all
polynomial mappingsf : V →W and we denote by
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Af := {g ∈ Aff(V ) : f ◦ g−1 = f}
the isotropy subgroup atf . Clearly,Af leaves every level setf−1(c), c ∈ f(V ), invariant.

3.2 Theorem. Let N be a commutative nilpotent algebra andπ a projection onN . Assume
thatN =

⊕Nk is aπ-grading and that there exists an integerd > 0 with π(N ) ⊂ Nd and
π(Nk) = 0 for all k 6= d. Then for f := π ◦ exp1 the affine subgroupAf ⊂ Aff(N ) acts
transitively onS = f −1(0).
In caseπ(N ) ⊂ Ann(N ) the groupAf even acts transitively on every level setf −1(c) = S+c
with c ∈ π(N ).

Proof. Fix an arbitrary pointa ∈ S. For everyj ≥ 0 consider the following condition:

(⋆) Af (a) ∩
⊕

k>j

Nk 6= ∅ .

It is clear that for the first claim in the Theorem we only have to show that(⋆) holds for allj
since then0 ∈ Af (a), or equivalentlya ∈ Af (0).
We first show by induction overj that (⋆) is valid for everyj < d : For j = 0 nothing has
to be shown. Now fix an arbitrary integerj with 0 < j < d. As induction hypothesis we
then may assumea ∈ ⊕

k≥j Nk. SetN0 := IF·11. Everyx ∈ N 0 has a unique decomposition
x = x0+x1+ . . . with xk ∈ Nk for all k ≥ 0. In particular,a = aj+aj+1+ . . . with ak ∈ Nk

for all k ≥ j. We trivially extendf to a functionf̂ onN 0, more precisely,̂f (s11 + x) := f (x)
for all s ∈ IF andx ∈ N .
Denote byF the space of all polynomial mapsN 0 → Nd of degree≤ d. Then f̂ ∈ F . We
identify via x ↔ 11+x the nilpotent algebraN with the affine hyperplaneU := 11+N in N 0

andAf with the subgroup

G := {g ∈ GL(N 0) : g(U) = U and f̂ (gx) = f̂ (x) for all x ∈ U} .

With aj ∈ Nj from above defineλ = λj ∈ End(N 0) by

(⋆⋆) λ(x) := aj

(
− x0 +

1

d− j

d−j∑

k=1

k xk

)
.

Thenλ(11) = −aj ∈ N andλ(N ) ⊂ ⊕
k>j Nk. Forg := exp(λ) ∈ GL(N 0) (λ is nilpotent)

we therefore haveg(11+a) = 11+b for someb in
⊕

k>j Nk. It is enough to showg ∈ G since
thenb ∈ Af (a) by the above identifications. The identityg(U) = U is obvious. It remains to
computêf ◦g onU . This can be done in terms of the following nilpotent operator ξ ∈ End(F) :

ξ(f)x := f ′(x)(λx) for all f ∈ F and x ∈ N 0 ,

wheref ′(x) ∈ Hom(N 0,Nd) is the formal derivative off at x. From λ(N 0) ⊂ N we
conclude thatξ(f) vanishes onU as soon asf has the same property. For allf ∈ F we have
the generalized Taylor’s formula

f ◦ exp(λ) = exp(ξ)(f) = f + ξ(f) +
1

2
ξ2(f) + . . . .

It therefore remains to show thatξ(f̂ ) vanishes onU . Now for everyx ∈ U we havex0 = 11
and

ξ(f̂ )x = π
∑

cνx
(ν1)
1 x

(ν2)
2 · · · x(νd)d ,

where the sum is taken over all multi indicesν ∈ INd with ν1 + 2ν2 + . . .+ dνd = d− j, and
cν ∈ Nj are certain factors. Fix such a multi indexν. For simpler notation we putx(−1) := 0
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for everyx ∈ N 0. Then we have

cν x
(ν1)
1 x

(ν2)
2 · · · x

(νd)
d

=

d−j∑

k=1

k

d− j
ajxk ∂/∂xj+k

(
x
(ν1)
1 · · · x

(νk−1)
k

· · · x
(νj+k+1)
j+k

· · ·x
(νd)
d

)

− aj∂/∂xj

(
x
(ν1)
1 · · ·x

(νj+1)
j

· · · x
(νd)
d

)

=

( d−j∑

k=1

kνk
d− j

− 1
)
ajx

(ν1)
1 x

(ν2)
2 · · ·x

(νd)
d

= 0

sinceνk = 0 for k > d− j. This proves the induction step and hence(⋆) for all j < d, that is,
we may assumea ∈ ⊕

k≥dNk.
To finish the proof of the first statement we notice thatπ

(
(x + b)k

)
= π(xk) holds for all

x ∈ N , k ≥ 1 and everyb ∈
(
id−π

)(⊕
k≥dNk

)
. This implies that the translationx 7→ x+ b

for every suchb belongs toAf . As a consequence we may assumea ∈ π(Nd). But a is also in
S by assumption andS ∩ π(Nd) = {0}, that is,a = 0.

Now supposeπ(N ) ⊂ Ann(N ) and letB be the subgroup of allg ∈ Af that commute with all
translationsx 7→ x+ c , c ∈ π(Nd). In every induction step above the operatorλ vanishes on
π(N ) ⊂ N 0. This implies thatB is already transitive onS and the second claim follows.

In the proof of 3.2 we have identifiedN with 11 + N via the identificationx ↔ 11+x.
In caseNd is the annihilatorN[1] of N in 3.2, the operatorλ in (⋆⋆) corresponds via the
identification to the affine transformationT : N → N , where

(3.3) T =
1

(d− j)
D − aj with D ∈ der (N ) defined byD(x) = aj

∑

k>0

k xk .

The proof in [8] for the special case, whereNd has dimension 1 and is the annihilator ofN , is
also based on these nilpotent derivationsD.

For base fieldIF ∈ {IR,C} Theorem 3.2 essentially is already contained in [5], see also
[6] for a special version withIF = C. For the special case thatπ(N ) is the annihilator ofN
and this annihilator has dimension 1 see also [8].

In Theorem 3.2 the groupAf is not the full affine groupAff(S). Indeed,

(3.4) θt :=
⊕

k>0

tk id|Nk
∈ GL(S)

satisfiesf ◦ θt = tdf for every t ∈ IF∗. As a consequence, ifπ has 1-dimensional range in
Nd ∩ Ann(N ), the groupAff(S) has at mostd orbits inN . In particular, in caseIF = C
this group has only two orbits inN , the hypersurfaceS and its open connected complement
N\S. In case IF = IR the connected identity componentAff(S)0 has three orbits inN , the
hypersurfaceS and both sides of the complementN\S.

In caseN =
⊕Nk is a grading in 3.2, the operatorλ :=

⊕
k>0 k id|Nk

∈ der (N )
is diagonalizable overIF and has only positive integers as eigen-values. Conversely, if N is
an arbitrary (commutative) nilpotent algebra andλ ∈ der (N ) is diagonalizable overIF with
spectrum inZ+, thenN =

⊕Nk is a grading, whereNk for everyk is thek-eigenspace ofλ.

As already mentioned, not every nilpotent algebraN has a grading, compare Section 8
for counterexamples. But there exists always a decomposition

(3.5) N =
⊕

k∈Z+

Nk , with NjNk ⊂
⊕

ℓ≥j+k

Nℓ for all j, k > 0 .
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Indeed, chooseNk in such a way thatN k = Nk ⊕ N k+1 for all k > 0. In general, a non-
gradable nilpotent algebra may have aπ-grading with non-trivial projectionπ. As a trivial
example for this phenomenon choose for fixed non-gradableN a decomposition (3.5) and let
π onN be the canonical projection ontoN2.

The following result gives a lower bound for the size of the 0-orbit under the affine
groupAff(S) in caseπ has range in the annihilator ofN : Fix k > 0 and consider the ideal
N[k] as defined in2.2. Then forf := π ◦ exp1 andS := f −1(0) as before the intersection
S ∩ N[k] is a smooth subvariety with dimensiondim(N[k]/N[1]). For everya ∈ S ∩ N[3] and
ρ := (id+π)/2 ∈ End(N ) define the affine transformationha onN by

ha(x) := x− ρ(ax) + a .

3.6 Proposition. Let N be an arbitrary commutative nilpotent algebra, letπ be a projection
on N with range in the annihilator ofN and letS := Sπ. Then{ha : a ∈ S ∩ N[3]} is
contained inAf and generates a subgroup acting transitively onS ∩ N[3]. In particular,S is
affinely homogeneous ifN has nil-index≤ 3.

Proof. Fix a ∈ S ∩ N[3]. Thenha ∈ Aff(N ) since the operatorx→ ρ(ax) is nilpotent onN .
A simple computation showsf ◦ ha = f and also thatha, h

−1
a leaveN[3] invariant. The first

claim follows withha(0) = a. The second follows fromN[3] = N in case ofν(N ) ≤ 3.

4. Admissible algebras

For the rest of this paper we deal only with commutative nilpotent algebrasN of finite
dimension overIF such that the annihilatorN[1] is of dimension1. For simplicity we call such
algebrasadmissible algebras. These are just the maximal ideals of Gorenstein algebras offinite
vector space dimension≥ 2 overIF.

In this and the subsequent sections we construct several objects, universally associated
with a given admissible algebraN . These will encode enough information to characterize the
admissible algebra up to isomorphy. Roughly speaking, we define a certain familyΣ of smooth
hypersurfacesS ⊂ N such that each of its members determinesN . We also establish a natural
duality between the points of a given hypersurfaceS ∈ Σ and the members ofΣ itself. In the
next section we construct a set ofIF-valued polynomials, so-called nil-polynomials, closely
related to the hypersurfacesS ∈ Σ. We also determine how the algebra structure ofN can be
reconstructed from an associated nil-polynomialp (in fact the knowledge of the quadratic and
cubic terms ofp turns out to be sufficient.)

We start with some preparations. We call every projectionπ = π2 ∈ End(N ) with range
π(N ) = N[1] anadmissible projectiononN and denote byΠ(N ) ⊂ End(N ) the subvariety of
all admissible projections. Everyπ ∈ Π(N ) is uniquely determined by its kernelK = ker(π)
that satisfiesN = K ⊕ N[1]. Further, every projectionπ ∈ Π(N ) gives rise to the algebraic
smooth hypersurface, compare (2.4),

Sπ = {x ∈ N : π ◦ exp1(x) = 0} = log1(ker π)

that we also call anil-hypersurface. We denote byΣ(N ) := {Sπ : π ∈ Π(N )} the set of
all such hypersurfaces. Note that{0} is the intersection of allS ∈ Σ(N ). The canonical map
β : Π(N ) → Σ(N ), π 7→ Sπ, is clearly surjective. Later on (see 4.6) we will show thatβ is
even bijective.

All the key objects associated withN , such as the bilinear formsbπ : N ×N → N[1],
the polynomial mapsfπ : N → N[1] and the subvarietiesSπ ⊂ N depend on the choice of the
projectionπ. In this section we show that in the admissible case the ‘essential’ properties of
bπ, fπ andSπ do not depend on the projection and can be considered as invariants associated
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to N only. Further we prove that every smooth hypersurfaceSπ determines the admissible
algebraN up to isomorphy.

For everye ∈ N 0 define the multiplication operatorMe ∈ End(N ) by Me(x) = ex.
Recall thatexp : N → U = 11 +N is a group isomorphism with inverselog.

4.1 Lemma. Π(N ) is an affine plane of dimensiondim(N/N[1]) in End(N ). In fact

Π(N ) = {π ∈ End(N ) : π = ρ ◦ π, ρ = π ◦ ρ} for every ρ ∈ Π(N )

andN/N[1]×Π(N ) −→ Π(N ) , (x+N[1] , π) 7−→ π◦Mexp x , yields a well-defined simply
transitive action of the vector groupN/N[1] onΠ(N ) .

Proof. Clearly, the mapping is well defined, has values inΠ(N ) and gives an action ofN/N[1].
The action is also free – indeed, suppose thatπ ◦Mexp b = π for someπ ∈ Π(N ), b ∈ N . For
c := exp1(b) thenπ ◦Mc = 0, that is,bπ(c,N ) = 0 and thusc ∈ N[1], see (2.5). But then also
b = c ∈ N[1].
The action is also transitive – indeed, fix arbitraryπ, ρ ∈ Π(N ). Thenλ := ρ− π vanishes on
N[1] and satisfiesλ = π◦λ. Hence, again by the non-degeneracy ofbπ onker(π), we conclude
λ = π ◦Mb for someb ∈ ker π. This impliesρ = π + π ◦Mb = π ◦M11+b = π ◦Mexp c for
c := log(11 + b) ∈ N .

The algebra automorphism groupAut(N ) acts onΠ(N ) by conjugation, that is, by
L(π) := L◦π◦L−1 for allL ∈ Aut(N ) andπ ∈ Π(N ). ThenL(ker π) = kerL(π) is obvious.
The groupAut(N ) also acts onΣ(N ) in the obvious way and satisfiesL(Sπ) = SL(π) for all
L ∈ Aut(N ) andπ ∈ Π(N ).

The following result generalizes Propositions 2.2. and 2.3in [6].

4.2 Theorem. Let N , Ñ be arbitrary admissible algebras having not necessarily the same
dimension. Also letπ ∈ Π(N ), π̃ ∈ Π(Ñ ) be arbitrary admissible projections. Then for
S := Sπ, S̃ := Sπ̃ and for every linear mapL : N → Ñ the following conditions are
equivalent, provideddim(Ñ ) > 1.

(i) L is an algebra isomorphism.
(ii) S̃ = L(S − c) for somec ∈ N .

Furthermore, the pointc = cL,π,π̃ in (ii) is uniquely determined byL, π, π̃ and coincides with
the unique element inS satisfyingπ̃ = L ◦ (π ◦Mexp c) ◦ L−1. Finally

(∗) S =
{
cL,π,ρ : ρ ∈ Π

(
Ñ
) }

holds for every algebra isomorphismL : N → Ñ .

Proof. (i) =⇒ (ii) Assume (i). By Lemma4.1 there existsc ∈ N withL−1◦π̃◦L = π◦Mexp c .
Sinceexp1(c + a) = exp1(c) + a for everya ∈ N[1], we can assumeπ(exp1 c) = 0, that is,
c ∈ S. Thenπ(exp1 c) = 0 implies

π̃(exp1 L(x)) = π̃ ◦ L(exp1 x) = L ◦ π((exp c)(exp1 x)) = L ◦ π(exp1(x+ c))

for all x ∈ N , that is,L(x) ∈ S̃ if and only if x+ c ∈ S.

(ii) =⇒ (i) Sincedim Ñ > 1 alsoν(Ñ ) > 1 and the linear span of̃S is Ñ . ThenL is an
epimorphism and alsoν(N ) > 1. We show thatL is also injective: Note first that since the
quadratic part ofπ ◦ exp2 is non-degenerate onker(π), S is not invariant under any non-trivial
translation. Ifker(L) 6= 0 thenL−1(S̃) = ker(L)+S−c would be Zariski dense inN and a
proper algebraic subset ofN at the same time, a contradiction.
SinceL− L(c) provides an affine equivalence betweenS andS̃ we can use the analytic proof
of Prop. 2.3 in [6] to obtain thatL is anIF-algebra isomorphism in the special caseIF = C. We
reduce the case of a general field to this special result by a Lefschetz principle type argument.
To begin with we denote byK the set of all subfieldsIK ⊂ IF that are obtained by adjoining a
finite subset ofIF to the prime field ofIF. It is well known that everyIK ∈ K is isomorphic to
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a subfield ofC.
Now lete ∈ N be an arbitrary but fixed element. Then it is enough to show that L(e2) = L(e)2:
Choose a linear basisB of N containing a basis ofπ−1(0) and a basis ofN[1]. Then there exists
a field IK ∈ K such that the linear spanB := 〈B〉IK containse and is aIK-subalgebra ofN .
By the choice ofB the intersectionB ∩ N[1] has dimension 1 overIK and is the annihilator of
B. Also,S ∩B is a smooth hypersurface overIK in B. In the same way choose a linear basisB̃
of Ñ containing a basis of̃π−1(0) and a basis of̃N[1]. Adjoining a suitable finite subset ofIF
to IK we may assume in addition without loss of generality thatB̃ := 〈B̃〉IK containsc and also
is a IK-subalgebra of̃N . EnlargingIK again withinK if necessary, we may even assume that
the affine transformationA := L− L(c) mapsB ontoB̃. ClearlyA mapsS ∩ B onto S̃ ∩ B̃.
We now considerIK as subfield ofC. We then get the complex nilpotent algebrasB⊗IK C and
B̃ ⊗IK C with annihilators(B ∩ N[1]) ⊗IK C and(B̃ ∩ Ñ[1]) ⊗IK C respectively, each having
complex dimension 1 overC. TheIK-affine mapA|B extends to aC-affine mapB ⊗IK C →
B̃⊗IKC sending the corresponding complex hypersurfaces onto eachother. By Proposition 2.3
in [6] thenM|B ⊗IK idC is an algebra isomorphism, implyingL(e2) = L(e)2. Together with
the first step this proves (i)⇐⇒ (ii).

Next, assume thatc in (ii) is not uniquely determined. Then there existsa ∈ N with a 6= 0
andS = S + a. ForK := π−1(0) we haveN = K ⊕ N[1] andS = {(y, f(y)) : y ∈ K} is
the graph of the polynomial mapf : K → N[1] given byf(y) = −π(exp2(y)). In particular,
f = (b, f(b)) for someb ∈ K and

(∗∗) f(y + tb) = f(y) + f(tb) for all y ∈ K

and allt ∈ Z. Sincef is a polynomial map(∗∗) even holds for allt ∈ IF. Comparing terms
that are linear iny as well as int we getπ(by) = 0 for all y ∈ K. But the quadratic formπ(y2)
is non-degenerate onK, implying b = 0 in contradiction tof 6= 0.

Finally, for the proof of(∗) we may assumẽN = N andL = idN . Fix an arbitraryc ∈ S and
pute := exp1(c). Thenπ(e) = 0 andρ := π+ π ◦Me is an admissible projection onN . This
impliesSρ = S − c and consequentlyc = cL,π,ρ.

4.3 Corollary. The algebrasN , Ñ are isomorphic if and only ifS, S̃ are affinely equivalent.

4.4 Corollary. Under the same assumptions as in4.2, for every linear mapL : N → Ñ the
following conditions are equivalent.

(i) S̃ = L(S).
(ii) L is an algebra isomorphism with̃π = L(π) (= L ◦ π ◦ L−1).

Proof. Assume (i). ThenL is an algebra isomorphism with̃π = L(π ◦Mexp c) = L(π) for
c = 0 by Theorem 4.2. The converse implication is trivial.

4.5 Corollary. Aut(N ) ∩Aff(S) = GL(S).

Next we show equivalences between the various sets. In particular, for every fixedS ∈
Σ(N ), we give a duality between points inS and surfaces inΣ itself.

4.6 Lemma. (Duality) LetN be an admissible algebra andπ ∈ Π(N ). Then the mappings

απ : Sπ −→ Π(N )

s 7−→ π ◦Mexp s

,
β : Π(N ) −→ Σ(N )

ρ 7−→ Sρ

are bijective and satisfy β ◦ απ(s) = Sπ − s for all s ∈ Sπ.

Proof. Let ρ = π ◦Mexp s with s ∈ Sπ. Thenx ∈ Sρ is equivalent to

0 = π
(
exp(s) exp1(x)

)
= π

(
exp1(x+ s)− exp1(s)

)

and hence to(x + s) ∈ Sπ sinceπ(exp1(s)) = 0. Bijectivity of απ follows from the proof
of 4.1 and the fact thatSπ as graph has the following property: Everyx ∈ N is a unique sum
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x = a + b with a ∈ N[1] and b ∈ Sπ. Surjectivity ofβ holds by definition and injectivity
follows from 4.4.

Our next goal is to investigate the behavior of the above setsunder algebra isomorphisms.
Obviously, algebra isomorphisms are functorial in the sense that for every such isomorphism
L : N → Ñ one has the following well-defined maps (also denoted by the same letterL):

(4.7)
L : Σ(N ) −→ Σ(Ñ )

S 7−→ L(S)
,

L : Π(N ) −→ Π(Ñ )

π 7−→ L ◦ π ◦ L−1

(4.8) with L(Sπ) = SL(π) .

In particular, we have in case ofN = Ñ the group action of the algebra automorphism group
Aut(N ) ⊂ GL(N ) on the affine planeΠ(N ) by conjugation, that is, byL(π) = L ◦ π ◦ L−1

for all L ∈ Aut(N ) andπ ∈ Π(N ). Also the affine groupAff(S) acts canonically on the
hypersurfaceS ∈ Σ(N ) and we show next that both group actions are equivariantly equivalent,
more precisely, define the following map

γ : Aut(N ) −→ Aff(N ), L 7→ γ(L) := L− L(cL,π,π) ,

with cL,π,π ∈ S as in Theorem 4.2, see also the first part of its proof.

4.9 Proposition. Let N be an admissible algebra,π ∈ Π(N ), S := Sπ andγ as above. Then
γ induces a group isomorphismAut(N ) → Aff(S). Furthermore, the diagram

Aut(N ) × Π(N ) −→ Π(N )yγ
yα−1

π

yα−1
π

Aff(S) × S −→ S

commutes and has bijective vertical arrows, while the horizontal arrows represent the respective
group actions.

Proof. ForA := γ(L) we haveA(S) = L(S − cL,π,π) = S by (ii) of 4.2, i.e.,γ yields a map
Aut(N ) → Aff(S), which by Theorem 4.2 is a bijection ontoAff(S) . The inverse ofγ is just
the mapping that associates to everyA ∈ Aff(S) its linear partL := A − A(0). This implies
thatγ is a group isomorphism. The commutativity of the diagram canbe seen as follows: Direct
consequence of 4.8 is the commutativity of the diagram

Aut(N ) × Σ(N ) −→ Σ(N )∥∥ xβ
xβ

Aut(N ) × Π(N ) −→ Π(N )

with bijective vertical maps. Hence, it suffices to prove the commutativity of

Aut(N ) × Σ(N ) −→ Σ(N )yγ
xβ ◦ απ

xβ ◦ απ

Aff(S) × S −→ S .

According to 4.6 and 4.2 we have for arbitraryL ∈ Aut(N ) andt ∈ S = Sπ

(
L , S − t

)
−→ L(S)− L(t) = S + L(cL,π,π)− L(t)yγ

xβ ◦ απ

xβ ◦ απ(
L− L(cL,π,π) , t

)
−→ L(t)− L(cL,π,π) .
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Remark. Proposition 4.9 remains true also in the trivial casedim(N ) = 1, although thenS
consists of a single point andAut(N ) = GL(N ) holds. Indeed, by our definition in this case
Aff(S) = GL(N ) as well. In all other cases,S is total inN andAff(S) acts effectively on
S. The proposition implies that the orbit structure forAff(S) in S is isomorphic to the orbit
structure forAut(N ) in Π(N ). In particular, both group actions ofAut(N ) andAff(S) are
transitive as soon as one of it has this property. For the special caseIF = IR or IF = C this
is essentially the content of Theorem 2.3 in [8]: There the spaceT of all hyperplanes inN
transversal toN[1] is introduced, which viaπ ↔ ker(π) can be canonically identified with our
spaceΠ(N ). In addition a certain subgroupGπ ⊂ Aff(S) is introduced, and as Theorem 2.2
in [8] it is proved thatAut(N ) acts transitively onT if and only if Gπ acts transitively onS.
Then Theorem 2.3 saysGπ = Aff(S) in case of base fieldIR or C.

Theorem 4.2 together with Proposition 4.9 implies the following result.

4.10 Corollary. For every admissible algebraN the following conditions are equivalent.
(i) For some (and hence every)π ∈ Π(N ) the hypersurfaceSπ is affinely homogeneous.
(ii) For allπ, π̃ ∈ Π(N ) the hypersurfacesSπ, Sπ̃ are linearly equivalent.

(iii) The groupAut(N ) acts transitively onΠ(N ).
(iv) The groupAut(N ) acts transitively onΣ(N ).

Proof. (i) =⇒ (ii) Let π, π̃ be admissible projections and assume thatSπ is affinely homo-
geneous. ThenSπ̃ = Sπ−c for somec ∈ S by Theorem 4.2. For everyA ∈ Aff(Sπ) with
A(0) = c, the linear transformationx 7→ α(x)−c mapsSπ ontoSπ̃.

(ii) =⇒ (i) Assume (ii) and fixπ ∈ Π(N ) together with an arbitrary pointc ∈ Sπ. By Theorem
4.2 there exists̃π ∈ Π(N ) with Sπ̃ = Sπ−c. By assumption there existsg ∈ GL(N ) with
g(Sπ) = Sπ̃. The transformationx 7→ g(x)+c is inAff(Sπ) and maps the origin toc.

(i) ⇐⇒ (iii) This follows immediately from Proposition 4.9. (iii)⇐⇒ (iv) is trivial.

As an immediate consequence of Theorem 3.2 we state:

4.11 Corollary. For every graded admissible algebraN conditions(i) - (iv) in 4.10hold.

Proposition 4.9 says, in particular, that the groupsAut(N ) andAff(S) are isomorphic. A
careful inspection of the corresponding proofs reveals that under the assumptions of Theorem
3.2 and of Proposition 3.6 these groups contain unipotent subgroups of dimensiondim(N )−1.
In caseN has a grading, we even getdimAut(N ) ≥ dim(N ) since thenθs ∈ Aut(N ) as
defined in (3.4). The same argument givesdim der (N ) ≥ dim(N ) = dim(N 0)− dim(N[1])
in the graded case, compare also Proposition 2.3 in [12] in case IF = C. For every cyclic
nilpotent algebraN equality holds.

The infinitesimal analogon.As shown in 4.9 the groupsAut(N ), Aff(S) are always isomor-
phic. In caseIF = IR,C these groups are even isomorphic as Lie groups, implying that then
also the corresponding Lie algebrasder (N ), aff(S) are isomorphic. Besidesder (N ) also a
Lie algebraaff(S) can be canonically defined for arbitrary base fields, but a priori there is no
reason why these Lie algebras should be isomorphic also in caseIF 6= IR,C:
Fix an admissible algebraN and an admissible projectionπ on N . Put S := Sπ, that is
S = f −1(0) for f := π ◦ exp1. For everyx ∈ S thenTx(S) := ker(f ′(x)) is thetangent space
at x, wheref ′(x) = π ◦Mexp x ∈ End(N ) is the formal derivative off at x and, as defined
above,My ∈ End(N ) is the multiplication operatorz 7→ yz.
Denote byaff(S) the linear space of all affine transformationsA : N → N that are ’tangent‘
to S, that is, satisfyA(x) ∈ Tx(S) for all x ∈ S. Thenaff(S) is a Lie algebra with respect
to [A,B] = A′ ◦ B − B′ ◦ A, where the derivativeA′ = A − A(0) is the linear part ofA. A
subalgebra isgl(S) := gl (N ) ∩ aff(S).

4.12 Proposition. For everyD ∈ End(N ) the following conditions are equivalent.
(i) D ∈ der (N ).
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(ii) D − v ∈ aff(S) for somev ∈ N .
Furthermore, the vectorv = vD,π in (ii) is uniquely determined byD and coincides with the
unique elementv in T0S = ker π satisfying[π,D] = π ◦Mv. AlsoD 7→ D − vD,π induces a

Lie algebra isomorphismder (N )
≈→ aff(S).

Proof. Assume (i). ThenD(N[1]) ⊂ N[1] for the annihilatorN[1] and henceπ+[π,D] ∈ Π(N ).
By Lemma4.1 there existsc ∈ N with π+[π,D] = π◦Mexp c , that is,[π,D] = π◦Mv for v =
exp1(c). It is no restriction to assumev ∈ ker(π) = T0S. Consider the affine transformation
A := D − v onN . Then(exp x)D(x) = D(exp1 x) andπ(v expx) = π(v exp1 x) imply

(
π ◦Mexp x

)
A(x) = π ◦ (D −Mv)(exp1 x) = D ◦ π(exp1 x) = 0

for all x ∈ S. This meansA(x) ∈ TxS and (ii) is proved.
Assume conversely (ii). We have to showD(c2) = 2cD(c) for all c ∈ N . In caseIF = C this
follows with the affine vector fieldξ := (D(x) − v) ∂/∂x onN and applying Theorem 4.2 to
the 1-parameter subgroupexp(tξ) of Aff(S). The case of general base field can be reduced to
C by a Lefschetz type argument similar to the one used in the proof of 4.2, we omit the details.
Also the remaining claims follow as in the proof of 4.2.

5. Nil-polynomials

For every admissible algebraN with annihilatorN[1] we call a linear formω : N → IF
apointing onN if ω(N[1]) = IF (in analogy to function spaces where points in the underlying
geometric space induce linear forms with certain properties). Also,N with a fixed pointing is
called apointed algebra. For every vector spaceW of finite dimension we denote byIF[W ] the
algebra of all (IF-valued) polynomials onW . Since in characteristic zero every field is infinite,
we do not distinguish between polynomials inIF[W ] and the polynomial functionsW → IF
they induce.

5.1 Definition. p ∈ IF[W ] is called anil-polynomial associated to the admissible algebraN
if there exists a pointingω onN and a linear isomorphismϕ : W → ker(ω) ⊂ N such that
p = ω ◦ exp2 ◦ϕ.

Notice that we do not exclude the trivial caseW = 0 with nil-polynomialp = 0. Let us
agree that thisp has degree−∞.

To every pointingω on the admissible algebraN there exists a unique admissible pro-
jectionπ on N and a unique linear isomorphismψ : N[1] → IF with ω(x) = ψ(πx) for all
x ∈ N , and conversely, every pointing onN is obtained this way. Toπ we have associated the
hypersurfaceSπ ⊂ N , compare (2.4). It is easy to see that for the nil-polynomialp occurring
in 5.1 the hypersurfaceSπ is linearly equivalent to the graph

Γp := {(x, t) ∈W ⊕ IF : t = p(x)} .

5.2 Definition. We say that an admissible algebraN hasProperty (AH) if for some (and hence
every) nil-polynomialp associated toN the graphΓp is affinely homogeneous, or equivalently,
if one of the equivalent conditions (i) - (iv) in Corollary 4.10 is satisfied.

5.3 Definition. Two nil-polynomialsp ∈ IF[W ], p̃ ∈ IF[W̃ ] are calledlinearly (affinely)
equivalentif there exists a linear (affine) isomorphismg :W ⊕ IF → W̃ ⊕ IF mappingΓp onto
Γp̃ .

5.4 Proposition. The nil-polynomialsp ∈ IF[W ], p̃ ∈ IF[W̃ ] are linearly equivalent if and
only if there exists a linear isomorphismα : W → W̃ and anε ∈ GL(IF) ∼= IF∗ with
p̃ = ε ◦ p ◦ α−1.

Proof. Assume thatp, p̃ are linearly equivalent. Then there existα ∈ Hom(W, W̃ ), β ∈
Hom(IF, W̃ ) as well asγ ∈ Hom(W, IF), δ ∈ IF such that(x, t) 7→ (αx + βt, γx + δt)
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establishes a linear equivalenceΓp → Γp̃. The ideal inIF(W⊕ IF) of all polynomials vanishing
onΓp is generated byt−p(x). As a consequence we have for a suitableε ∈ IF∗

(γx+ δt)− p̃(αx+ βt) = ε(t− p(x)) for all (x, t) ∈W ⊕ IF .

Thenγ = 0 and henceα is invertible. Denote byq, q̃ the quadratic parts ofp, p̃. Thenq̃(αx+
βt) = εq(x) for all x, t implies β = 0 since the quadratic form̃q is non-degenerate oñW .
Thenp̃(αx) = εp(x) proves the first claim. The converse is obvious.

As a consequence, every equivalence class of nil-polynomials in IF[W ] is an orbit of the group
IF∗ × SL(W ) acting in the obvious way onIF[W ].

Corollaries 4.3 and 4.10 immediately imply the following result.

5.5 Proposition. Letp, p̃ be nil-polynomials associated to the admissible algebrasN , Ñ . Then
(i) N , Ñ are isomorphic if and only ifp, p̃ are affinely equivalent.
(ii) In caseN hasproperty (AH)(for instance, ifN admits a grading) then(i) remains true

with ‘affinely’ replaced by ‘linearly’.

For any pair of admissible algebrasN , Ñ with nil-polynomialsp ∈ IF[W ], p̃ ∈ IF[W̃ ]
Proposition 5.5 has the following obvious consequence.

5.6 Corollary. If N hasproperty (AH)andN , Ñ are isomorphic, then there exists anε ∈ IF∗

and a linear isomorphismα : W → W̃ with p̃[k] ◦ α = ε p[k] for all k, wherep[k] is the
homogeneous part of degreek in p.

For2 ≤ k ≤ ν(N ) the homogeneous polynomialp[k] is non-zero and gives a projective
subvariety in the projective spaceIP(N ) associated toN . All these varieties then are invariants
for the algebra structure ofN , providedN has property (AH). It is worthwhile to mention that
this remains true for the leading homogeneous part also in the general situation, more precisely:

5.7 Proposition. The statement ofCorollary 5.6remains true fork = ν(N ) even without
requiring thatN hasproperty (AH).

Proof. Assume thatL : N → Ñ is an algebra isomorphism. ThenN , Ñ have the same
nil-index, sayν ≥ 2. Without loss of generality we may assume that there are pointings ω,
ω̃ on N , Ñ with W = ker(ω), W̃ = ker(ω̃) andp = ω ◦ exp2, p̃ = ω̃ ◦ exp2 onW, W̃ .
Because ofL(N[1]) = Ñ[1] there is anε ∈ IF∗ with ω̃(L(a)) = εω(a) for everya ∈ N[1].
Further, there exists a linear isomorphismα : W → W̃ and a linear mapλ : W → Ñ[1]

with L(x) = α(x) + λ(x) for all x ∈ W . But thenp̃[ν](αx) = ω̃((αx)(ν)) = ω̃((Lx)(ν)) =
ω̃(L(x(ν))) = εω(x(ν)) = εp[ν](x) sincex(ν) ∈ N[1].

We illustrate by an example how 5.7 can be applied to prove that two given admissible
algebras are not isomorphic: Anticipating notation of Section 8, see 8.2, considerM(Z3 +
Y 4 + X3Z + X3Y 2 + X5Y Z) andM(Z3 + Y 4 + X3Z + X2Y Z + X3Y 2). These are
admissible algebras of dimension 20 with nil-index 6, both having the same Hilbert function
{1, 3, 5, 5, 4, 2, 1}. It can be seen2 that both algebras do not have property (AH), compare also
with Section 8. Leading terms of nil-polynomialsp, p̃ ∈ IF[x1, . . . , x20] are, for instance,
p[6] = x41x

2
2 (for the first algebra) and̃p[6] = x41(19x

2
1 − 90x1x2 + 135x22) (for the second).

Since the quadratic factor iñp[6] is not the square of a linear form we conclude with Proposition
5.7 that the algebras are not isomorphic.

Remark. There is a geometric interpretation of the leading homogeneous termp[ν]: Iden-
tify W in the standard way with an affine open subset in the projective spaceIP(IF ⊕ W ).
HenceIP(IF ⊕ W ) = W ∪̇ IP(W ), where IP(W ) is the projective hyperplane at infin-
ity. The zero setT := {p = 0} ⊂ W is linearly equivalent to{f = 0} ∩ ϕ(W ) where
ϕ : W → ker(ω) ⊂ N is the linear isomorphism from definition 5.1. Consider the Zariski
closureCℓ(T ) ⊂ IP(IF ⊕ W ). Then the set of points at infinity,T∞ := Cℓ(T ) ∩ IP(W ),
coincides with{[z] ∈ IP(W ) : p[ν](z) = 0}. For a not algebraically closed fieldIF thenT∞
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encodes in general less information then the homogeneous part p[ν]. Indeed, for instance in
caseIF = IR the quadratic factor iñp[6] above is positive definite onIR2, that is, the zero
locus ofp̃[6] in the real projective spaceIP19(IR) is the hyperplane{x1 = 0}. This suggests to
consider projective varieties defined by thep[ν] (or p[k], k < ν) only in case of algebraically
closed base fields. In such a situation the corresponding divisor rather then the mere zero set is
an invariant equivalent top[ν].

Every nil-polynomialp associated toN depends ondim(N )−1 variables. Another type
of polynomial, closer to (2.3), can be defined as follows:

5.8 Definition. The polynomialf ∈ IF[V ] is called anextended nil-polynomialassociated
to N , if there exists a linear isomorphismϕ : V → N and a pointingω on N such that
f = ω ◦ exp1◦ϕ .

It is clear that for the linear partf [1] ∈ IF[V ] of f the restriction off toW := (f [1])−1(0)
is a nil-polynomial associated toN and that the graphΓp ⊂ W ⊕ IF is linearly equivalent to
the hypersurfacef −1(0) ⊂ V . Conversely, every nil-polynomialp ∈ IF[W ] associated toN
can be extended byf (x, t) := p(x) + t to an extended nil-polynomialf ∈ IF(W ⊕ IF).

For a given pointed algebra(N , ω) fix a nil-polynomialp = ω ◦ exp2 ◦ϕ ∈ IF[W ] in
the following and define the symmetrick-form ωk onW by

(5.9) ωk(x1, x2, . . . , xk) = ω
(
(ϕx1)(ϕx2) · · · (ϕxk)

)
.

Then we have the expansionp =
∑

k≥2 p
[k] into homogeneous parts, where

(5.10) p[k](x) =
1

k!
ωk(x, . . . , x)

andω2 is non-degenerate onW . Using p[2] andp[3] we define a commutative (a priori not
necessarily associative) product(x, y) 7→ x·y onW by

(5.11) ω2(x·y, z) = ω3(x, y, z) for all z ∈W

and also a commutative product onW ⊕ IF by

(5.12) (x, s)(y, t) := (x·y, ω2(x, y)) .

ForK := ker(ω) there is a unique linear isomorphismψ : IF → N[1] such thatπ = ψ ◦ ω is
the canonical projectionK ⊕N[1] → N[1]. With these ingredients we have

5.13 Proposition. With respect to the product(5.12)the linear map

W ⊕ IF → N , (x, s) 7→ ϕ(x) + ψ(s) ,

is an isomorphism of algebras. In particular,W with productx·y is isomorphic to the nilpotent
algebraN/N[1] and has nil-indexν(N )−1.

Proof. For allx, y ∈W we have

(ϕ(x) + ψ(s))(ϕ(y) + ψ(t)) = (N −A) +A with

N := ϕ(x)ϕ(y) ∈ N and A := π(ϕ(x)ϕ(y)) = ψ(ω2(x, y)) ∈ N[1].

It remains to showN −A = ϕ(x·y). But this follows from

N −A ∈ K and ω
(
ϕ(x·y)ϕ(z)

)
= ω

(
ϕ(x)ϕ(y)ϕ(z)

)
= ω

(
(N −A)ϕ(z)

)

for all z ∈W .
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5.14 Corollary. Every nil-polynomialp on W is uniquely determined by its quadratic and
cubic term,p[2] andp[3]. In fact, the otherp[k] are recursively determined by(5.10)and

(5.15) ωk+1(x0, x1, . . . , xk) = ωk(x0·x1, x2, . . . , xk)

for all k ≥ 2 andx0, x1, . . . , xk ∈W .

Corollary 5.14 suggests the following question: Given a non-degenerate quadratic form
q and a cubic formc onW . When does there exist a nil-polynomialp ∈ IF[W ] with p[2] = q

andp[3] = c ? Usingq, c we can define as above fork = 2, 3 the symmetrick-linear form
ωk onW and with it the commutative productx·y onW . A necessary and sufficient condition
for a positive answer is thatW with this product is a nilpotent and associative algebra. As
a consequence we get for every fixed non-degenerate quadratic form q on W the following
structural information on the space of all nil-polynomialsp onW with p[2] = q : Denote byC
the set of all cubic forms onW . ThenC is a linear space of dimension

(
n+2
3

)
, n = dimW , and

(5.16) Cq := {c ∈ C : ∃ nil-polynomialp onW with p[2] = q, p[3] = c}

is an algebraic subset.

6. Representations of nil-algebras and adapted decompositions

In the following letA be an arbitrary commutative nilpotent algebra andE a vector space.
Also let

N : A→ End(E) , x 7→ Nx ,

be an algebra homomorphism. For example, every commutativealgebraA admits the faithful
left-regular representationL : A→ End(A0), whereA0 is the unital extension ofA. Consider
the following characteristic subspaces ofE:

B := 〈Nx(E) : x ∈ A〉IF and K :=
⋂

x∈A

ker(Nx) .

Let us call every decomposition

(6.1) E = E0 ⊕ E1 ⊕ E2 ⊕ E3 with B = E2 ⊕ E3 , K = E0 ⊕ E3

anN-adapted decompositionof E. It is obvious that starting withE3 := B ∩ K and choos-
ing successively suitable linear complementsE2, E0 andE1 one always obtains anN-adapted
decompositions forE. Clearly,E0 = 0 if the image algebraN(A) is maximal among all com-
mutative nilpotent subalgebras ofEnd(E).

Now assume thatE has finite dimension and that a non-degenerate symmetric bilinear
form h : E × E → IF is fixed such that everyNx is selfadjoint with respect toh : For every
T ∈ End(E) the adjointT ⋆ is defined byh(Tv,w) = h(v, T ∗w) for all v,w ∈ E. The
orthogonal ‘complement’ of every linear subspaceL ⊂ E is L

⊥ := {v ∈ E : h(v,L) = 0}.
The linear subspaceL is calledtotally isotropicif L ⊂ L

⊥.

6.2 Proposition. There exists anN-adapted decomposition(6.1) that is related toh in the
following way:

(i) The three subspacesE0, E1⊕ E3 andE2 are mutually orthogonal with respect toh.
(ii) The subspacesE1 and E3 are totally isotropic, and hence have the same dimension.

Proof. Choose an arbitraryN-adapted decompositionE = E0⊕ Ẽ1⊕E2⊕E3. Since everyNx

is selfadjoint we haveK = B
⊥. In particular,E3 is totally isotropic. We get furtherdim(E) =

dim(K) + dim(B) , dim(Ẽ1) = dim(E3), E0 ⊕E2 ⊕E3 = E
⊥
3 and that the three spacesE0,

E2, E3 are mutually orthogonal.
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Further we conclude fromE2∩ E
⊥
2 ⊂ B

⊥ = K thatE2∩ E
⊥
2 ⊂ E2 ∩ K = 0. In the same

way we conclude fromE0∩ E
⊥
0 ⊂ K

⊥ = B thatE0∩ E
⊥
0 ⊂ E0∩ B = 0. As a consequence

we get (E⊥
0 ∩ E

⊥
2 ) ∩ E

⊥
3 = E3 andE⊥

0 + E
⊥
2 = E . Now choose a linear subspaceE1 ⊂

(E⊥
0 ∩E

⊥
2 ) with E1 ⊕E3 = E

⊥
0 ∩E

⊥
2 . Counting dimensions we getdim(E1) = dim(Ẽ1) from

dim(E⊥
0 ∩E⊥

2 ) = dim(E⊥
0 )+dim(E⊥

2 )−dim(E⊥
0 +E

⊥
2 ) and thus thatE = E0⊕E1⊕E2⊕E3 is

anN-adapted decomposition satisfying (i). The formh is non-degenerate onE1⊕E3. Because
of dim(E1) = dim(E3) we finally may assume without loss of generality that alsoE1 is totally
isotropic.

We call everyN-adapted decomposition satisfying (i), (ii) above an(N, h)-adapted de-
compositionof the representation spaceE. In the following we give two applications:

LetN be an admissible algebra with pointingω. Clearly, in general the quotientB := N/N[1]

is a non-admissible nilpotent algebra, say with product(x, y) 7→ x • y. Left multiplication
yields a (non-faithful) representationN : B → End(B) in terms of the multiplication operator
Nx : y 7→ x • y. Further, the symmetric bilinear formb(x, y) = ω(xy) on N factors to a
non-degenerate symmetric bilinear formh onN/N[1] and allNx are selfadjoint with respect
to h. Note thatN is isomorphic to(N/N[1])× IF with multiplication given by

(6.3) (x, a) ⋄ (y, b) := (Nx(y), h(x, y)) = (Ny(x), h(y, x)) .

Instead ofN/N[1] we use the isomorphic algebraW := ker(ω) with productx·y, as given in
Proposition 5.13. Then the formh is the restriction ofb to W . If N has nil-indexν ≥ 2 then
the subalgebraN(W ) ⊂ End(W ) has nil-indexν−2. If W = W0 ⊕ W1 ⊕ W2 ⊕W3 is a
(W, h)-adapted decomposition, thenN ′ :=W1 ⊕W2 ⊕W3 ⊕N[1] andN ′′ :=W0 ⊕N[1] are
admissible subalgebras withν(N ′′) ≤ 2 , andN is a smash product ofN ′ with N ′′, as defined
in Section7.

6.4 Proposition. Every admissible algebra of nil-index≤ 3 has a grading.

Proof. As indicated aboveN is isomorphic toW × IF with product 6.3 whereW = ker(ω) ⊂
N is the nilpotent subalgebra isomorphic toN/N[1]. Let N : W → End(W ) as above and
consider the subalgebraN(W ) ⊂ End(W ). Let W = W0 ⊕W1 ⊕W2 ⊕W3 be a(W, h)-
adapted decomposition. SinceN(W ) has nil-index≤ 1 we haveW2 = 0. PutN2 := W1,
N4 := W3, N6 := Ann(N ) andN3 := W0. ThenN = N2 ⊕N3 ⊕N4 ⊕N6 is a grading of
N .

The estimateν(N ) ≤ 3 in Proposition 6.4 is sharp as a counterexample in Section 8
with nil-index 4 and dimension 8 will show.

The next result improves Proposition 3.6 in the case of admissible algebras.

6.5 Proposition. For every admissible algebraN and everyπ ∈ Π(N ) there exists a subgroup
of Aff(Sπ) acting transitively onSπ ∩ N[4]. In particular,N hasProperty (AH)if N has nil-
index≤ 4.

Proof. Put S := Sπ as shorthand and denote byh the restriction ofbπ to W := ker(π).
As above,Nx ∈ End(W ) is the multiplication operatory 7→ x·y. Choose a(W, h)-adapted
decompositionW = W0 ⊕ W1 ⊕ W2 ⊕ W3 and denote byπk ∈ End(W ) the canonical
projection with rangeWk for 0 ≤ k ≤ 3. Then(W0 +W3)·W = 0, W ·W ⊂ W2 ⊕W3 and
W ′·W2 ⊂W3, whereW ′ := N[4] ∩W .

Now fix a pointa ∈ S∩W ′. Because of Proposition 3.6 it is enough to showg(a) ∈ N[3]

for someg ∈ Aff(S)∩Aff(N[4]) : PutP := π3 ◦Nc ◦π2−π2 ◦Nc ◦π1 for c := a−π(a) ∈W ′.
ThenP∗ = −P andQ := 1

2
Nc + 1

6
P ∈ End(W ) is nilpotent withQ(W ) ⊂ N[3]. Set

N 0 := IF11⊕W ⊕N[1] and defineλ ∈ End(N 0) by

(s11, x, t) 7→ (0,Qx− sc, h(c, x)) for all s ∈ IF, x ∈W, t ∈ N[1] .

λ is nilpotent and mapsN 0 toN[4]. Therefore the unipotent operatorg := exp(λ) ∈ GL(N 0)
exists. Clearly,U := 11 +N and11 +N[4] areg-invariant.
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We proceed as in the proof of Theorem 3.2. Denote byF the space of all polynomial
mapsN 0 → N[1] of degree≤ 4 and define the nilpotent operatorξ ∈ End(F) by

(ξf)(z) := f ′(z)(λz) for all f ∈ F and z ∈ N 0 .

We claim thatg leaves11+S invariant. For this we only have to show thatξ f̂ vanishes on11+S,
wheref̂ ∈ F is defined bŷf (s11, x, t) := t+ π(exp2 x). But this just means that

h(c− Qx, x+ 1
2
Nxx+ 1

6
N2

xx) = h(c, x)

holds for allx ∈W , or equivalently

h(2Qx− Ncx, x) = h(3Qx− Ncx,Nxx) = h(Qx,N2
xx) = 0 .

The first term vanishes since2Q − Nc is skew adjoint. The two other terms vanish since
3Qx− Ncx ∈ N[2] andQx ∈ N[3]. This proves the claim, and as a consequence we get
g(11 + a) = 11 + b with b ∈ (c·W +W3 +N[1]) ⊂ N[3].

We conclude the section with a lower bound for the dimension of der (N ) andAut(N ).
For fixedπ ∈ Π(N ), by the proof of Lemma 4.1 everyλ ∈ Hom(N ,N[1]) with λ(N[1]) = 0
is of the formλ = π ◦Mb, b ∈ kerπ. Thereforec 7→ π ◦Mc induces for everyk > 0 a linear
isomorphismN[k]/N[1]

∼= Hom(N/N k,N[1]). This implies

dimN[k] + dimN k = dimN + 1 for all 0 ≤ k ≤ ν(N ) .

As a consequence we get from Proposition 6.5 the

6.6 Corollary. dimAut(N ) ≥ dimN/N 4 for every admissible algebraN . The same lower
bound holds for the dimension ofder (N ).

Proof. In caseν(N ) < 4 the algebraN is gradable by Proposition 6.4 proving the claim. In
caseν(N ) ≥ 4 Proposition 6.5 together withdim (N[4]/N[1]) = dim(N/N 4) implies

dimAff(Sπ) ≥ dimN/N 4 + dimGL(Sπ) , that is

dimAut(N ) ≥ dimN/N 4 + dim {g ∈ Aut(N ) : g ◦ π = π ◦ g}
as a consequence of Proposition 4.9. The estimate forder (N ) follows with 4.12.

7. Some examples

For every admissible algebraN and associated nil-polynomialp the degree ofp is the
nil-index ofN , provideddimN > 1. In the following we give a method how large classes of
nil-polynomials of degrees 3 and 4 can be constructed.

Nil-polynomials of degree 2 on a given vector spaceW 6= 0 are quite obvious – these are
precisely all non-degenerate quadratic formsq onW . Thenq is associated to the admissible al-
gebraN :=W⊕IF whose commutative product is uniquely determined by(x, t)2 = (0, q(x))
for all x ∈ W andt ∈ IF (special case of 6.3). Clearly,N is canonically graded byN1 = W
andN2 = IF. Notice that in every dimensionn ≥ 2 the number of isomorphy classes for ad-
missible algebras with nil-index 2 is: 1 ifIF is algebraically closed;[n/2] if IF is the real field;
infinite if IF is the rational field.

For every pair of nil-polynomialsp′ ∈ IF[W ′], p′′ ∈ IF[W ′′] we get a new nil-polynomial
p := p′ ⊕ p′′ ∈ IF[W ′ ⊕W ′′] by settingp(x′, x′′) := p′(x′) + p′′(x′′) for all x′ ∈ W ′ and
x′′ ∈ W ′′. Let us call a nil-polynomialreducedif it is not affinely equivalent to a direct sum
p′ ⊕ p′′ of nil-polynomials withp′′ of degree two. Then it is clear that every nil-polynomial
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p is affinely equivalent to a direct sump′ ⊕ p′′ with p′ reduced andp′′ of degree≤ 2. The
nil-polynomialsp′, p′′ are uniquely determined up to affine equivalence.

On the level of algebras the direct sum of nil-polynomials corresponds to the following
construction: Let(N ′, ω′), (N ′′, ω′′) be pointed algebras. ThenI := {(s, t) ∈ N ′

[1] × N ′′
[1] :

ω′(s)+ω′′(t) = 0} is an ideal inN ′×N ′′ andN := (N ′×N ′′)/I becomes a pointed algebra
with respect to the pointing(s, t) + I 7→ ω′(s) + ω′′(t). We writeN = N ′ ∨ N ′′ and call
it the smash productof the pointed algebrasNj . This product is commutative and associative
in the sense that(N1 ∨ N2) ∨ N3 andN1 ∨ (N2 ∨ N3) are canonically isomorphic. We call
the admissible algebraN reducedif it is not isomorphic to a smash productN1 ∨ N2 with
ν(N2) = 2. Notice that every admissible algebraN ′ of dimension one is neutral with respect
to the smash product, that is,N ∨ N ′ ∼= N . Notice also that any smash product of gradable
admissible algebras is also gradable.

Nil-polynomials of degree 3

Letp ∈ IF[V ] be a homogeneous polynomial of degreed ≥ 2, that is,p(x) = q(x, . . . , x)
for all x ∈ V and a uniquely determined symmetricd-linear formq : V d → IF. Thenp is called
non-degenerateif V 0

p = 0 for

V 0
p := {a ∈ V : q(a, V, . . . , V ) = 0} = {a ∈ V : p(x+ a) = p(x) for all x ∈ V } .

7.1 Proposition. Let W be anIF-vector space of finite dimension andq a non-degenerate
quadratic form onW . Suppose furthermore thatW = W1 ⊕ W2 for totally isotropic (with
respect toq) linear subspacesWk and thatc is a cubic form onW1. Then, if we extendc toW
by c(x + y) = c(x) for all x ∈ W1, y ∈ W2, the sump := q + c is a nil-polynomial onW ,
andp is reduced if and only ifc is non-degenerate onW1. For all cubic formsc , c̃ onW1 with
nil-polynomialsp = q+ c , p̃ = q+ c̃ and associated admissible algebrasN , Ñ the following
conditions are equivalent:

(i) c̃ = c ◦ g for someg ∈ GL(W1).
(ii) N , Ñ are isomorphic as algebras.

Proof. ω3(x, y, t) = 0 for all t ∈ W2 impliesW·W ⊂ W2 andW·W2 = 0, that is,(x·y)·z =
0 for all x, y, z ∈ W , see (5.11). This implies thatp := q + c is a nil-polynomial. Fix a
decompositionW1 = W ′

1 ⊕W ′′
1 with W ′′

1 := {a ∈ W1 : c(x + a) = c(x) for all x ∈ W1}.
Then alsoW ′′

1 = {a ∈W1 : a·W1 = 0} and we put

W ′
2 := {y ∈W2 : y ⊥W ′′

1 } and W ′′
2 := {y ∈W2 : y ⊥W ′

1} .

Then forW ′ := W ′
1 ⊕ W ′

2 andW ′′ := W ′′
1 ⊕ W ′′

2 we have the orthogonal decomposition
W = W ′ ⊕W ′′ with W·W ′′ = 0 andW·W ⊂ W ′

2. Denote byp′ andp′′ the restriction ofp
to W ′ andW ′′ respectively. Thenp = p′ ⊕ p′′ as direct sum of nil-polynomials andp′′ has
degree≤ 2. These considerations show thatp is reduced if and only ifW ′′

1 = 0. It remains to
verify the equivalence of (i) and (ii).

(i) =⇒ (ii) There exists a uniqueg♯ ∈ GL(W2) with ω2(gx, y) = ω2(x, g
♯y) for all x ∈ W1

andy ∈ W2. But thenp̃ = p ◦ h for h := g × (g♯)−1 ∈ O(q) ⊂ GL(W ). By Proposition 5.5
the algebrasN , Ñ are isomorphic.
(ii) =⇒ (i) By Proposition 7.1 the algebraN/N[1] is isomorphic toW with the productx·y
determined byp[2] = q andp[3] = c . Choose, as above, decompositionsW = W ′ ⊕ W ′′,
W ′ = W ′

1 ⊕ W ′
2 andW ′′ = W ′′

1 ⊕ W ′′
2 . Then the cubic formc ‘essentially lives’ on the

subspaceW ′
1 ⊂ W1 andW ′′

1 ⊕W2 is the annihilator ofW . In the same way the productx ·̃y
determined bỹp[2] = q and p̃[3] = c̃ onW gives an algebrãW isomorphic toÑ/Ñ[1]. We
choose again decompositions̃W = W̃ ′ ⊕ W̃ ′′, W̃ ′ = W̃ ′

1 ⊕ W̃ ′
2 andW̃ ′′ = W̃ ′′

1 ⊕ W̃ ′′
2 and

haveW̃ ′′
1 ⊕ W̃2 = Ann(W̃ ).

Now assume (ii) and fix an algebra isomorphismh : W → W̃ . Then there exists a linear
isomorphismα : W ′

1 → W̃ ′
1 with h(x) ≡ α(x) mod Ann(W ) for all x ∈ W1. Let β :
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W ′′
1 → W̃ ′′

1 be an arbitrary linear isomorphism and considerg := α ⊕ β as an element of
GL(W1). Replacing̃c by c̃ ◦ g−1 we may assume without loss of generality thatg = idW1

.
But thenx·x = x ·̃x and thus6 c(x) = ω2(x·x, x) = ω2(x ·̃x, x) = 6 c̃(x) for all x ∈W1.

Suppose thatW1
∼= IFm with coordinatesx = (x1, . . . , xm) has dimensionm > 0 in

Proposition 7.1. ThenW ∼= IF2m with coordinates(x, y) = (x1, . . . , xm, y1, . . . , ym) and we
may assumeq(x, y) = x1y1 + . . . + xmym. As already mentioned, the linear spaceC of all
cubic forms onW1 has dimension

(
m+2
3

)
. The groupGL(W1) acts onC from the right and

has dimensionm2 over IF. The difference of dimensions is
(
m
3

)
. But this number is also the

cardinality of the subsetJ ⊂ IN3, consisting of all triplesj = (j1, j2, j3) with 1 ≤ j1 < j2 <
j3 ≤ m. Consider the affine map

(7.2) α : IFJ → C , (tj) 7→ c0 +
∑

j∈J

tjcj ,

wherec0 := x31 + . . . + x3m andcj := xj1xj2xj3 for all j ∈ J . Notice that the nil-polynomial
q + c0 =

⊕m
k=1(xkyk + x3k) is a direct sum ofm nil-polynomials, that is, the corresponding

admissible algebra is anm-fold smash power of the cyclic algebraIFt ⊕ IFt2 ⊕ IFt3, where
t4 = 0.

In caseIF = IR or IF = C, for a suitable neighbourhoodU of 0 ∈ IFJ the mapα : U →
C intersects allGL(n, IF)-orbits inC transversally. Indeed, since all partial derivatives ofc0
are monomials containing a square, the tangent space atc0 of itsGL(n, IF)-orbit is transversal
to the linear subspace〈cj : j ∈ J〉IF of C . In particular, in casem ≥ 3 there is a family of
dimension

(
m
3

)
≥ 1 over IF (= IR orC) of pairwise differentGL(n, IF)-orbits and thus of

non-equivalent nil-polynomials of degree3 onW . Notice that in casem = 3 the mappingα in
(7.2) reduces to

(7.3) α : IF → C , t 7→ x31 + x32 + x33 + tx1x2x3 .

7.4 Corollary. Let IF be eitherIR or C. Then in every dimensionn ≥ 7 there is an infinite
(in fact uncountable) number of isomorphy classes of admissible algebras of dimensionn and
nil-index 3.

Proposition 6.2 together with Proposition 7.1 generalizesTheorems 3.3 and 4.1 in [3]
from the case of algebraically closed base fields to arbitrary fields of characteristic 0, see Propo-
sition 7.5 below. For every admissible algebraN with nil-indexν the non-degeneracy ofbπ on
N/N ν impliesdim(N k/N ν) ≤ dim(N/N j) for all ν/2 < k < ν andj = ν − k + 1 and
thusH(ν − 1) ≤ H(1) for the Hilbert functionH = HN . This means in the special case of
nil-index ν = 3 that the Hilbert function ofN has the form{1,m, n, 1} with m ≥ n ≥ 1.

7.5 Proposition. (Classification of admissible algebras with nil-index 3) The admissible
algebrasN of nil-index 3 are, up to isomorphism, precisely the smash productsN ′ ∨ N ′′,
whereN ′ is a reduced algebra of dimension> 1 as described in Proposition7.1 andN ′′ has
nil-index at most two. IfN has Hilbert function{1,m, n, 1} thenN ′ has symmetric Hilbert
function{1, n, n, 1} and admits a canonical grading. Furthermore, the Hilbert function ofN ′′

is {1,m − n, 1} if m > n, and is{1, 1} if m = n (that is,dim(N ′′) = 1, or equivalently,
N = N ′ in this case).

Notice that every admissible algebra with a canonical grading has symmetric Hilbert
function (2.6). The converse is not true, see e.g. the example of dimension 23 in Section 8.

Moduli algebras of type Ẽ6 . With Proposition 5.13 it is possible to compute for a given
nil-polynomial an admissible algebra it is associated to. For the nil-polynomials in Proposition
7.1 in casedimW = 6 there is a connection to moduli algebras associated to simple elliptic
singularitiesẼ6, see [2], p. 306: LetIF = C and for t ∈ C with t3 + 27 6= 0 consider the
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nilpotent algebraNt = M(X3+Y 3+Z3+ tXY Z), compare the notation (8.2) below. Then,
with x, y, z being the residue classes ofX,Y,Z a basis forNt is x, y, z, yz, xz, xy, xyz with
Ann(Nt) = Cxyz and

(7.6) pt = tx31 + tx32 + tx33 − 18x1x2x3 + x1x4 + x2x5 + x3x6

is a nil-polynomial associated toNt. Notice that the cubic part ofpt occurs already in (3.1)
of [2]. Notice also thatW1 = 〈x, y, z〉C andW3 = 〈yz, xz, xy〉C are two totally isotropic
subspaces as occurring in Proposition 7.1. Although for themoduli algebras the three param-
eterst with t3 + 27 = 0 have to be excluded (for these three values oft the singularity of
{X3 + Y 3 + Z3 + tXY Z = 0} is not isolated),pt is a nil-polynomial also for theset and is
associated to an admissible algebra of nil-index 3 as well. For t 6= 0 ands := −18/t it is easy
to see that the nil-polynomialpt in (7.6) is linearly equivalent to

x31 + x32 + x33 + sx1x2x3 + x1x4 + x2x5 + x3x6 , compare with (7.3).

Nil-polynomials of degree 4

The method in Proposition 7.1 can be generalized to get nil-polynomials of higher de-
grees, say of degree 4 for simplicity. Throughout the subsection we use the notation (2.1).
Because of Propositions 5.5 and 6.5 it is not necessary to distinguish between linear and affine
equivalence for nil-polynomials of degree 4.

For fixedn,m ≥ 1 letW =W1⊕W2⊕W3 be a vector space withW1 = IFn,W2 = IFm

and letq be a fixed non-degenerate quadratic form onW in the following. Assume thatW1,
W3 are totally isotropic and thatW1 ⊕W3,W2 are orthogonal with respect toq. ThenW has
dimension2n+m, and without loss of generality we assume that for suitableε1, . . . , εm ∈ IF∗

q(y) =

m∑

k=1

εky
(2)
k if y ∈W2 .

As before letC be the space of all cubic forms onW . Our aim is to find cubic formsc ∈ Cq

that are the cubic part of a nil-polynomial of degree 4.

Denote byC ′ the space of all cubic formsc onW1 ⊕W2 such thatc(x+ y) is quadratic
in x ∈W1 and linear iny ∈W2, or equivalently, which are of the form

c(x+ y) =
1

2

m∑

k=1

n∑

i,j=1

cijkxixjyk for all x ∈W1, y ∈W2

with suitable coefficientscijk = cjik ∈ IF. Extending everyc ∈ C ′ trivially to a cubic form on
W we considerC ′ as a subset ofC .

For fixed c ∈ C ′ the symmetric 2- and 3-linear formsω2, ω3 on W are defined by
ω2(x, x) = 2q(x) andω3(x, x, x) = 6c(x) for all x ∈ W . With the commutative productx·y
onW , see (5.11), define in addition also thek-linear formsωk by (5.15) for allk ≥ 4. Then,
for everyx, y ∈ W1 the identityω2(x·y, t) = ω3(x, y, t) = 0 for all t ∈ W1 ⊕W3 implies
x·y ∈ W2, that isW1·W1 ⊂ W2. In the same wayω2(x·y, t) = 0 for all x ∈ W1, y ∈ W2 and
t ∈ W2 ⊕W3 impliesW1·W2 ⊂ W3. AlsoWj ·Wk = 0 follows for all j, k with j + k ≥ 4.
Thereforec belongs toCq if and only if (a·b)·c is symmetric ina, c ∈W1 for everyb ∈W1.

In terms of the standard basise1, . . . , em of W2 = IFm we have

a·b =
m∑

k=1

( n∑

i,j=1

ε−1
k cijkaibj

)
ek for all a, b ∈W1
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and thus withΘi,j,r,s :=
∑m

k=1 ε
−1
k cijkcrsk we get the identity

ω2

(
(a·b)·c, d

)
=

n∑

i,j,r,s=1

Θi,j,r,s aibjcrds for all a, b, c, d ∈W1 , implying

(7.7) A := C ′ ∩ Cq = {c ∈ C ′ : Θi,j,r,s is symmetric in i, r} .

Notice that the condition in (7.7) implies thatΘi,j,r,s is symmetric in all indices.A is a rational
subvariety of the linear spaceC ′, it consists of all thosec for which the corresponding product
x·y onW is associative. The groupΓ := GL(W1) × O(q|W2

) ⊂ GL(W1 ⊕W2) acts onC ′

by c 7→ c ◦ γ−1 for everyγ ∈ Γ. Furthermore,(g, h) 7→ (g, h, (g♯)−1) embedsΓ into O(q),
compare the proof of Proposition 7.1. As a consequence, the subvarietyA ⊂ C ′ is invariant
underΓ.

We are only interested in the case wherec ∈ A is non-degenerate onW1 ⊕W2. Then
Wk+1 = 〈W1·Wk〉IF holds fork = 1, 2, implying m ≤

(
n+1
2

)
. PutN :=

⊕
k>0Wk with

W4 := IF andWk := 0 for all k > 4. The product (5.12) realizesN as graded admissible
algebra. The non-degeneracy ofc gives in additionN k =

⊕
ℓ≥kWℓ for all k > 0 , that is,

the grading is canonical. Conversely, every canonically graded admissible algebra of nil-index
4 occurs (up to isomorphism) this way with a non-degeneratec as above. Further admissible
algebras with nil-index 4 can be obtained fromN as above by takingN ∨ N ′ with N ′ an ar-
bitrary admissible algebra of nil-index≤ 3. But all these algebras are gradable by Proposition
6.4. Since there exist non-gradable admissible algebras ofnil-index 4 (see Section 8) the clas-
sification problem in the nil-index 4 case must be more involved than the one in Proposition
7.5.

Let us consider the special casen = 2 with m =
(
n+1
2

)
= 3 in more detail (among these

are in caseIF = C also all nil-polynomials of maximal ideals of moduli algebras associated to
singularities of typẽE7, see [2], p. 307). For simplicity we assume that for suitablecoordinates
(x1, x2) of W1, (y1, y2, y3) of W2 and(z1, z2) of W3 the quadratic formq is given by

(7.8) q = x1z1 + x2z2 + y
(2)
1 + y

(2)
2 + εy

(2)
3 for fixed ε ∈ IF∗

(in caseIF = IR,C this is not a real restriction). For everyt ∈ IF consider the cubic form

ct := (x
(2)
1 + x

(2)
2 )y1 + x1x2y2 + tx

(2)
2 y3

onW1 ⊕W2, which is non-degenerate ift 6= 0. A simple computation reveals that everyct is
contained inA = C ′ ∩ Cq. The corresponding nil-polynomial (depending on the choice of ε)
then is

(7.9) pt = q + ct + dt with dt := x
(4)
1 + x

(2)
1 x

(2)
2 + (1 + ε−1t2)x

(4)
2 .

For everyt ∈ IF∗ an invariant ofdt is φ(t) := g2(dt)
3/g3(dt)

2 = ε2t−4(4 + ε−1t2)3 ∈ IF,
whereg2, g3 are the classical invariants of binary quartics, compare [9] p. 27. Since every fiber
of φ : IF∗ → IF contains at most 6 elements we conclude

7.10 Proposition. For every fieldIF and every fixedε ∈ IF∗ the set of all equivalence classes
given by all nil-polynomialspt, t ∈ IF∗, has the same cardinality asIF and, in particular, is
infinite.

Remarks 1. In caseIF = Q is the rational field there are infinitely many choices ofε ∈ Q∗

leading to pairwise non-equivalent quadratic formsq in (7.8). For each such choice there is an
infinite number of pairwise non-equivalent nil-polynomials pt of degree 4 overQ.
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2. In caseIF = IR is the real field there are essentially the two choicesε = ±1. In case
ε = 1 the formq has type(5, 2) and all nil-polynomialspt with 0 < t ≤

√
8 are pairwise

non-equivalent. In caseε = −1 the formq has type(4, 3) and allpt with t > 0 are pairwise
non-equivalent.

3. Nil-polynomials of degree≥ 5 can be constructed just as in the case of degrees 3 and 4 as
before. As an example we briefly touch the case of degree 5: Fixa vector spaceW of finite
dimension overIF together with a non-degenerate quadratic formq onW . Assume furthermore
that there is a direct sum decompositionW = W1 ⊕W2 ⊕W3 ⊕W4 into non-zero totally
isotropic subspaces such thatW1 ⊕W4 andW2 ⊕W3 are orthogonal. Then consider a non-
degenerate cubic formc onW1 ⊕W2 ⊕W3 (trivially extended toW ) that can be written as a
sumc = c ′ + c ′′ of cubic forms with the following properties:c ′ is a cubic form onW1 ⊕W3

that is linear in the variables ofW3 while c ′′ is a cubic form onW1 ⊕W2 that is linear in the
variables ofW1. Denote byx·y the commutative product onW determined byq andc . Then
W2 = 〈W1·W1〉, W3 = 〈W1·W2〉 andW4 = 〈W1·W3 +W2·W2〉. If we assumec ∈ Cq, we
get withW5 := IF as in the nil-index 4 case above thatN :=

⊕
k>0Wk is a canonically graded

admissible algebra of nil-index 5. Conversely, every canonically graded admissible algebra of
nil-index 5 is obtained this way.

8. Some counterexamples

In this section we give examples of admissible algebraswithout Property (AH). By The-
orem 3.2 such an algebra cannot be graded. We also give examples of non-gradable algebras
with Property (AH).

A test for non-gradability (especially with computer aid) involving nil-polynomials is
the following

8.1 Proposition. LetN be an admissible algebra with nil-polynomialp ∈ IF[x1, . . . , xn] and
nil-index ν. Then, ifN has a grading, there exists a matrixA = (ajk) ∈ IFn×n such that

(i) ξp = p for ξ :=
∑n

j,k=1 ajkxk ∂/∂xj .
(ii) A is diagonalizable overIF.

(iii) Every eigen-value ofA is a positive rational number, and for every eigen-valueε also
1−ε is an eigen-value with the same multiplicity.

(iv) The eigenvalues form the arithmetic progression1
ν
, 2
ν
, . . . , ν−1

ν
if N has a canonical

grading.

Proof. Let N =
⊕Nk be a grading and putd := max{k : Nk 6= 0}. ThenNd is the

annihilator ofN . LetW :=
⊕

k<dNk and choose a linear isomorphismϕ : IFn → W such
thatϕ(ej) ∈ Nk for all j and suitablek = k(j), wheree1, . . . , en is the standard basis ofIFn.
Further letω be a pointing onN with kernelW and putp̃ := ω ◦ exp2 ◦ϕ. Then (i) - (iii)
hold for p̃ and the diagonal matrix̃A with diagonal entries̃ajj = k(j)/d for all j. In case the
grading is canonical,d = ν andNk 6= 0 for 0 < k < ν holds, implying (iv).

By Proposition 5.5 the nil-polynomialsp, p̃ are linearly equivalent. As a consequence of
Proposition 5.4 there existsC ∈ GL(n, IF) andc ∈ IF∗ with c p̃(x) = p(Cx) for all x ∈ IFn.
But thenp satisfies (i) - (iv) with respect toA = CÃC−1.

The proof of 8.1 uses the non-trivial fact that every gradable N has property (AH) and
hence that any two associated nil-polynomials are linearlyequivalent, compare 3.2 and 4.10.
Property (i) means thatp = λ1∂p/∂x1 + . . . + λn∂p/∂xn for suitable linear formsλk on
IFn, and hence thatp is in its Jacobi ideal (the ideal inIF[x1, . . . , xn] generated by all first
partial derivatives ofp). Part of 8.1 can also be reformulated in terms of quasi-homogeneous
polynomials. By definition,f ∈ IF[x1, . . . , xn] is quasi-homogeneousif there exist positive
integersm,m1, . . . ,mn with f(tm1x1, . . . , t

mnxn) ≡ tmf(x1, . . . , xn) for all t ∈ IF.

Remark. LetN be an admissible algebra having a grading. Then there existsa quasi-homoge-
neous nil-polynomial associated withN .
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Motivated by the main result of [11], see also [12], we organize our search for non-
gradable admissible algebras as follows: For fixed indeterminatesT1, . . . , Tm denote bym
the maximal ideal in the localizationR of IF[T1 . . . , Tm] at the origin, that is, the ideal of all
quotientsP/Q with P,Q ∈ IF[T1 . . . , Tm] satisfyingQ(0) 6= P (0) = 0. For everyF ∈ m2 let
J(F ) inR be theJacobi idealof F (the ideal generated by all first order derivatives ofF ). Then
if J(F ) ⊃ mk for somek, the Milnor algebraR/J(F ) has finite dimension and its maximal
ideal

(8.2) M(F ) := m /J(F )

is nilpotent. For our search we are looking for examples withF /∈ J(F ).

Let us stress that we always use the notationM(F ) in the following way: The indetermi-
natesT1, . . . , Tm giving the localizationR above are precisely those occurring inF . As an ex-
ample, for theM(F ) occurring two lines below we understandm = 2 and{T1, T2} = {X,Y }.

Non-gradable algebras with Property (AH)

LetN := M(X5 +X2Y 2 + Y 4). ThenN has basis

(8.3) x, x2, x3, x4, y, xy, y2, y3, x5,

wherex, y are the residue classes ofX,Y . We abbreviate this basis withe1, . . . , e9. The annihi-
latorN[1] is spanned bye9 = x5 and the residue class ofF is−e9/4 ∈ N[1] . A nil-polynomial
p ∈ IF[x1, . . . , x8] obtained from the basis is1

(8.4)

1
120x

5
1 +

(
1
6x

3
1x2 +

5
96x

4
5 − 5

8x
2
1x

2
5

)

+
(
1
2x

2
1x3 +

1
2x1x

2
2 +

5
8x

2
5x7 − 5

4x
2
1x7 − 5

2x1x5x6 − 5
4x2x

2
5

)

+
(
x1x4 + x2x3 +

5
4
x5x8 +

5
8
x27 − 5

2
x2x7 − 5

4
x26

)
.

In particular,N is an admissible algebra of dimension 9 and nil-index 5. Also, N does not have
a gradation but has Property (AH)2.

Further examples of this type (but of higher dimension) are obtained by varyingF . For
instanceN := M(F ) with F = X4 + X2Y 3 + Y 5 is an admissible algebra of dimension
11 and nil-index 5 without a grading but with Property (AH). As algebraN is isomorphic to
the (unique) maximal ideal ofIF[X,Y ]/I, whereI :=

(
∂F/∂X , ∂F/∂Y , X3Y

)
. The latter

algebra already appears as an example of a non-gradable algebra in Remark 3.3 in [1] (note
thatX5 occurring there is already contained inI and hence is superfluous).

If we go to algebras with embedding dimension 3 we can get an example with nil-index 4
and dimension 8. Add an additional indeterminateZ and considerM(X4+XY 2+Y 3+XZ2).
Then a basis is given byx, y, z, x2, x3, yz, z2, x4 and

p = 1
24
x41 + (1

2
x21x4 + 3x21x2 − 2x1x

2
2 +

4
9
x32 − 4

3
x2x

2
3)

+ (x1x5 +
1
2x

2
4 + 6x2x4 − 8

3x2x7 − 8
3x3x6)

is the nil-polynomial derived from it. The Hilbert functionis{1, 3, 3, 1, 1}. Also for this algebra
there is no matrixA ∈ IF7×7 satisfying (i) in Proposition 8.1. On the other hand, for suitable co-
efficientsλk ∈ IF[x1, . . . , x7] there exists1 a representationp = λ1∂p/∂x1 + . . .+λ7∂p/∂x7 ,
that is,p lies in its Jacobi ideal.

1 Computed withSingular, freely available athttp://www.singular.uni-kl.de/
2 Computed withMaple.
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Failing Property (AH)

In this subsection we restrict to the special caseIF ∈ {IR,C}. This allows us to use
analytic arguments.

It can be seen1 thatM(X6 + X2Y 3 + Y 5) is an admissible algebra of dimension 17
and nil-index 7. In the same wayM(X7 +X2Y 3 +X3Y 2 + Y 4) is an admissible algebra of
dimension 15 and nil-index 8. AlsoM(X5 + X2Y 2 + Y 4 + XZ2) for fixed indeterminates
X,Y,Z is an admissible algebra of dimension 15 with nil-index 6. All three algebras do not
have Property (AH). The automorphism groups have dimension25, 20, 23 respectively. Instead
of giving further details for these examples we do this for another one (of even lower nil-index
but higher dimension).

For indeterminatesX,Y,Z,U considerN := M(X3 +X2Y 2 + Y 4 +XZ2 + ZU2).
ThenN is an admissible algebra of dimension 23 and nil-index 5, in fact,N has symmetric
Hilbert function{1, 4, 7, 7, 4, 1}. A basis forN is1

x, y, z, u, xy, y2, xy2, yz, y2z, z2, yz2, y2z2, xu, yu, xyu, y2u, xy2u, u2, xu2, yu2, xyu2, y2u2, xy2u2

with the last vector spanningAnn(N ). Also, the nil-polynomial given by the above basis is1

(8.5)
p =

(
1
4x1x

2
4 −

1
8x

2
1x3 +

1
96x

2
2x3 +

1
8x

3
3

)
x22

+
(

1
18x

3
1x3 −

1
4x

2
1x2x8 −

1
4x

2
1x6x3 −

1
6x

2
1x

2
4 +

1
2x1x

2
2x18 −

1
2x1x2x5x3 +

1
4x6x

3
3 + x1x2x4x14

+ 1
2x1x6x

2
4 +

1
24x

3
2x8 +

1
8x

2
2x6x3 +

3
4x

2
2x3x10 +

1
2x

2
2x4x13 +

1
2x2x5x

2
4 +

3
4x2x

2
3x8

)

+
(
x1x2x20 −

1
4x

2
1x9 −

1
3x

2
1x18 −

1
2x1x5x8 + x1x6x18 −

1
2x1x7x3 −

2
3x1x4x13 + x1x4x16

+ x2x13x14 +
1
8x

2
2x9 +

1
2x

2
2x19 + x2x5x18 +

1
4x2x6x8 +

3
2x2x3x11 +

3
2x2x8x10 + x2x4x15

+ 1
2x1x

2
14 −

1
4x

2
5x3 + x5x4x14 +

1
8x

2
6x3 +

3
2x6x3x10 + x6x4x13 +

1
2x7x

2
4 +

3
4x

2
3x9 +

3
4x3x

2
8

)

+
(
x1x22 −

2
3x1x19 + x2x21 + x5x20 +

1
4x6x9 + x6x19 + x7x18 +

3
2x3x12

+ 3
2x8x11 +

3
2x9x10 + x4x17 −

1
3x

2
13 + x13x16 + x14x15

)
.

We claim that the graphS of p in IF23 cannot be affinely homogeneous. Definef on IF23 by
f (x1, . . . , x23) := p(x1, . . . , x22) − x23. SinceAff(S) is a Lie group overIF, affine homo-
geneity ofS would imply for every fixed1 ≤ ℓ ≤ 22 the existence of an affine vector field

ξ = ∂/∂xℓ +
23∑

j,k=1

ajkxk∂/∂xj

with coefficientsajk ∈ IF such thatξf = ρf for someρ ∈ IF. Since the polynomialf has
rational coefficients the vector fieldξ can be chosen in such a way that allajk andρ are rational.
But ξf = ρf is equivalent to a system of linear equations inajk, ρ. It can be seen2 that this
system has a rational solution only in caseℓ 6= 3. Therefore the orbit of0 ∈ S under the
groupAff(S) has dimension 21. In particular,S is not even locally affinely homogeneous at
the origin. Furthermore2, the groupAff(S) ∼= Aut(N ) is a Lie group of dimension42 overIF.

Remark. Since computer software may contain errors we carried out all computations in a
highly redundant manner: Different machines were used, the same computations were repeated
with different routines, bases of the admissible algebrasN under consideration were changed
resulting in totally different (but affinely equivalent) nil-polynomials and finally, the linear sys-
tem ξf = ρf with ξ from above was replaced by a totally different one (namely Lemma 8.6
for the special caser = 22 andn = 23). Notice thatξf−ρf ∈ IF[x1, . . . , x22] is a polynomial
of degree 5 havingajk andρ as parameters. An alternative condition forξ being tangent to
S ⊂ N clearly is thatξf vanishes at every point ofS. This leads to a linear system in terms of
a polynomial of degree bigger than 5. This works also for arbitrary codimension:

For fixed integersr, s ≥ 1 andn := r+s considerIFr, IFs with coordinates(x1, . . . , xr),
(xr+1, . . . , xn) respectively. Letp : IFr → IFs be a polynomial map. Thenp = (pr+1, . . . , pn)
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for scalar valued polynomialspk on IFr. Denote byS the graph ofp in IFn, which is a smooth
variety of codimensions. The proof of the following statement is an easy exercise in differen-
tiation and will be omitted.

8.6 Lemma. Let IF be eitherIR or C. ThenS ⊂ IFn is locally affinely homogeneous at the
origin if and only if for every1 ≤ ℓ ≤ r the following linear system in the unknownsajk,
1 ≤ j, k ≤ n, has a solution overIF

(†) Pm =

r∑

j=1

(Pj + δjℓ )∂pm/∂xj for m = r + 1, . . . , n , where

Pj :=
r∑

k=1

ajkxk +
n∑

k=r+1

ajkpk for 1 ≤ j ≤ n

andδ is the Kronecker delta.

The equations in Lemma 8.6 can also be used to compute the Lie algebraaff(S) of
Aff(S) numerically. Indeed, add to theajk further unknownsc1, . . . , cr and replace in(†) the
termδjℓ by cj . Then the solution space for this altered linear system is canonically isomorphic
to aff(S).
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