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Nilpotent algebras
and affinely homogeneous surfaces

By Gregor Feland Wilhelm Kaup

1. Introduction

This paper is devoted to the investigation of finite dimenalaccommutative nilpotent
(associative) algebra8” over an arbitrary base fiell of characteristic zero. Our main atten-
tion is focused on those algebras which have 1-dimensiam@h#ator since these algebras
naturally occur in connection with various, geometricatiptivated problems. The unital ex-
tensions\V'? = IF @ N of such algebras are exactly the Gorenstein algebras af fioisitive
vector space dimension ovEt.

There is only very sparse literature concerning the stractd general nilpotent com-
mutative algebras. For example, every such algebra hadizatiem as a subalgebra of some
End(V), V a vector space ovdF, which is maximal with respect to the property that it con-
sists of nilpotent and commuting endomorphisms. This méaatsabstractly given nilpotent
algebras and nilpotent subalgebras of endomorphism agetre essentially the same. While
the structure and classification of maximal commutativelatgs consisting of semisimple en-
domorphisms (Cartan subalgebras) is very well understbede is only little known about the
general structure, not to mention a classification, of ilgatént counterpart (for an approach
in terms of Macaulay’s inverse systems compare with [3])isTi& a bit surprising, as such
nilpotent algebras are quite ubiquitous objects which patwarious areas of mathematics.
One reason is certainly that the theory of nilpotent algelisanore involved than the theory
of Cartan subalgebras, due to the lack of rigidity properéied other obvious visible structure.
Since the standard tools from the Cartan theory such as thdtreory cannot be applied in
the nilpotent case, the desire arises for appropriate @yeaich help to understand nilpotent
commutative algebras. One of the purposes of this paperdsuelop such tools.

From a purely algebraic point of view nilpotent commutatigebras are building blocks
for general commutative algebras which, for instance, sderbe very important for quantum
physics. As already mentioned, commutative nilpotentladge naturally arise in the context of
several geometrically motivated questions as they oftevesss invariants attached to certain
geometric objects. Our interest in commutative nilpotdgélaras also originates from geome-
try. To be more specific, we mention two types of geometribfams which provide us with
commutative nilpotent algebras which in turn encode somth@fyeometric structure of the
original questions.

In Cauchy-Riemann geometry there is the question underhadoaditions certain CR-
manifolds are (locally) equivalent to tube manifolfisx /IR" Cc IR" @ IR" = C™ and how
many diferent tube realizations do exist. In [5] we show that thisngetic problem (in the
case of non-degenerate hyperquadrics) can be reduceddtasisdication of reahndcomplex
commutative nilpotent subalgebras with 1-dimensionalitlator.

Another type of problems arises from the study of isolatedengurface singularities
and their versal deformations: Létbe (the germ of) a holomorphic function, defined in a
neighbourhood’ of 0 € C", i.e.,h € O, := C{z,...,2,} such that the hypersurface
{h = 0} has an isolated singularity ih This implies thaierad h : U — C" is a finite map,
and consequently

is a finite dimensional local algebra. Hedgh) := (£, ..., #-) denotes thdacobi ideabf h
in O,. As a consequence of Nakayama’'s Lemma its maximal ideatisrarutative) nilpotent
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algebra. The full algebra serves as parameter space foniversal deformation of the isolated
singularity ofh. Consequently also the maximal ideal of the Tjurina algéﬁ,na(h, J(h)) is
nilpotent and its algebra structure turns out to deterntieeotiginal isolated singularity up to
a biholomorphic equivalence, see e.g. [12] for further itketa

For short, we call from now on a finite dimensional commutatilpotent algebra over
IF with 1-dimensional annihilator simply amdmissible algebrdn this paper we give a con-
struction of objects naturally associated with an admissitigebra/', encoding sfiicient
information to recover the original algebra. These objsetsm to be easier to deal with than
the admissible algebras themselves and also serve as @mivavariants allowing the ex-
plicit verification of whether two admissible algebras aennorphic. These objects are cer-
tain classes of smooth subvarieties/6f> IF" ! as well as certain classes of polynomials,
which we callnil-polynomials These polynomials are closely related to the aforemeation
smooth subvarieties. Roughly speaking the nil-polynosnak certain truncated exponential
series (here the nilpotency is crucial), concatenated avithear functional, which essentially
is nothing but a linear projection onto the annihilator/df The constant and linear parts of
every nil-polynomialp € IF[ X1, ..., X, vanish, but the quadratic part pfis non-degenerate.
Up to isomorphism the algebra structure.®ncan be recovered from the polynomjalEven
more is true, as the quadratic plus cubic term alorigcguto determine the structure &f, and
in turn the entire nil-polynomiap. Unlessn = 0, its degree coincides with the nil-index of,
i.e., the maximal number with N'¥ # 0.

Let A be the annihilator ofN and K a hyperplane in\ transversal ta4, that is,
N = K & A. The smooth variety associated wijth (and depending on linear isomorphisms
K =~ IF", A = TF) is simply the graphS c TF"™' of the corresponding nil-polynomial
p : IF" — IF. We call every suctt a nil-hypersurfaceAmong other things we prove that
two admissible algebra¥/, N with nil- -hypersurfacess, S are isomorphic as algebras if and
only if S, S are dfinely equivalent. For an even stronger statement see Thea&niVe also
show that &ine equivalence fof, S can be replaced by linear equivalence if and only if the
nil-hypersurfaces is afinely homogeneous. Linear equivalence gives a stronger@nguta-
tionally more convenient condition for the isomorphy of #igebras\/, N'. On the polynomial
level it means that for the corresponding nil-polynomigj$ there is ag € GL(n, IF) such
that p and p o ¢ differ by a constant factor frofir™. We further establish a duality between
a fixed nil-hypersurface of A/ and the parameter spa&¥/\') of all such nil-hypersurfaces.
Taking this duality a step further, we show that the actiorihef &fine groupAff(S) on S
is equivariantly isomorphic to the action of the algebraoendrphism groupAut(N) on the
affine spacal(\) of all projections with range the annihilator 4f.

As already mentioned,fizne homogeneity of an associated nil-hypersurfacef N/
makes computations mordfieient. However, the question for which admissible algebvas
the nil-hypersurfaces is afinely homogeneous is quite involved. Only recently we wete ab
to give a satisfactory answer to this question: While thehgpersurface of every admissi-
ble algebra of nil-index smaller than 5 is automaticalfiyreely homogeneous, there are non-
homogenous counterexamples starting with nil-index 5héndase however, wher¢ admits
aZ*-gradation, every corresponding nil-hypersurfatis afinely homogeneous.

Our paper is organized as follows: In Section 2 we fix notatiod state some prelim-
inaries. A simple example is given, which indicates why ia thst of the paper we stick to
nilpotent algebras that aemmutativeIn Section 3 we introduce the notion of a nil-surface,
which is a smooth algebraic varie,, associated with a given nilpotent commutative algebra
N, however depending also on a projectiore End(N). Further we discuss various notions
of gradations for nilpotent commutative algebras. The mesult of the section holds fo¥
admitting certain types of generalized gradations and etitolp projectionsr: In this caseS,;
is afinely homogeneous. A special version of this result for badd ' € {IR, C} is already
contained in [5] and later also was used in [6] Br= C, compare also with [8]. In Section
4 we restrict our attention tadmissible algebraalgebras\V'. From that point on we only con-
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sider admissible projections on A which means that the range ofis the (1-dimensional)
annihilator of /. The main result of this section is, roughly speaking, thatdlgebra struc-
ture of N only depends on the hypersurfaée c N, and ‘essential’ properties &f, do not
depend on the admissible projectianAnother statement is that théfiae groupAff(S;) is
canonically isomorphic to the algebra automorphism gréwp(A"). The main result of the
section, Theorem 4.2, is a generalization and extensionregat in [6] from base fieldC

to arbitraryIF. The proof in [6] is of analytic nature and we get the extemdig applying a
Lefschetz principle type argument. We also investigatetonml properties of the spadg V)

of all nil-hypersurfaces and of thefme spacdI(/N) of all admissible projections, formulate
a duality statement between a memiSeof X (N') and the familyX () itself and prove the
equivariant equivalence of the natural actionsAeft(N') onII(N) and of Aff(S) on S. We
close the section with an infinitesimal analogon, more pedgj we show for every base field
of characteristic 0 that for any admissible algeldfavith associated nil-hypersurface ¢ N
the derivation algebraet (\) is isomorphic to the Lie algebrgf (S) of all affine transforma-
tions V' — N that are ‘tangent’ tc&5. In Section 5 we associate to every admissible algebra
N = F"*! a class of mutually finely equivalent polynomials i [z, ... ,z,], callednil-
polynomials.The graphs of these polynomials afirsely equivalent toS;. In Section 6 we
present for every admissibl&” certain canonical decompositions and show: Everwith
nil-index < 3 has a grading, and for every with nil-index < 4 every S, is affinely homoge-
neous. Both bounds for the nil-index are sharp as will be shioywcounterexamples in the last
section. We also show for every admissible algekrthatder (M) andAut(N') have at least
dimensiondim (A /A). In Section 7 we give large classes of admissible algebra#-fdex

3 and 4. It turns out in particular, that in every dimensiorT for IF € {IR, C} the number of
isomorphy classes of admissible algebras is uncountafifétén We also get a classification
of all admissible algebras of nil-index 3. For the specialecaf algebraically closed base fields
this has already been achieved in [3] by completefiedtnt methods. In Section 8 we present
various counterexamples elaborated with computer aid. fgrtbese we give an admissible
algebra/V' of dimension 23 and nil-index 5 such théi is not atinely homogeneous his
disproves the Conjecture at the end of [7], repeated andi@stbas Conjecture 2.4 in [8a].

One of the essential parts of the present paper is Theorenr@ 2he special case of
admissiblealgebras it also occurs as Cor. 2.6 in [8a] together with taeesient“We note
that Corollary 2.6 was obtained by W. Kaup approximatelye¢ghmonths before this paper
was written”on page 3. This Corollary is essentially the same as Theor&nim 28a]. In later
versions such as [8b] any hint to our priority is missing.

2. Preliminaries

Throughout the papéN is the set of alhon-negativéntegers whileZ™ is the semigroup
of all positiveintegers. FurthelF is an arbitrary but fixed field of characteristic 0. All algabr
in the following are defined ovdf' and are associative, but may have infinite dimension as
IF-vector spaces (at least in the first three sections). Foy sueh algebral, everyx € A and
every integek > 1 we put

1 . . .
(2.1) ) .= Emk and z(¥:=1 if A hasaunitl.

Also we denote for every € Z* by

[ee]

exp; = » TW € T[T
k=j

the j-truncated exponential seri@henexp,olog, = log;oexp, = T for
o (_1)k+1

log; := Z 3 Tk .
k=1
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2.2 Definition. For everylF-algebraA define inductively the characteristic ideal§ C A by
Al = AandAFt! = <AAk>1F Also pUtA[O} =0 andA[k] = {l’ € A:aAF + AFx = 0}
for k > 0. ThenA is callednilpotentif A*+1 = 0 for somek > 0, and the minimak with this
property is called thail-indexof A, that we denote by = v(A).

For nilpotentA with nil-index v the inclusionA* C Apy41-1 is obvious for allk < v
as well asy = inf{k > 0 : A,; = A} . The idealAnn(A) := Ay, called theannihilatorof
A, plays a prominent role in the following. The annihilatoirades with thesocleof A/, that
is, the sum of all minimal ideals.

Let NV be a nilpotent algebra. From now on we always consiger, log, : N' — N
as polynomial mappings that are inverse to each other. Farhitrary projectionr = 72 €
End(N). Then for the polynomial mapping

(2.3) f-N—=>N, f(x) ;== m(exp; ) ,

(2.4) S =S, :=f 10) =log,(kerm) C N

is a smooth algebraic subvariety of codimensiank(7) containing the origin. We will be
mainly interested in the case where the annihilatoNohas dimension 1 and is the range
7w (N) of the projectiont. ThenS; is a hypersurface iWV.

With Aff(N) = GL(N) x A we denote the group of alfiane bijections of\A” and by
Aff(S) := {g € AT(N) : g(S) = S} the subgroup stabilizing. Furthermore GL(5) :=
{g € GL(N) : g(S) = S} is the isotropy subgroup offf(S) at the origin. We are interested
in cases wheré is afinely homogeneous, that is, the groifi (.S) acts transitively orf. This
is not always true: As a counterexample consider the malgiebaa 7 of all strictly upper
triangularn x n-matrices with coordinates;;, for 1 < j < k£ < n and projectionr given by
x — x1, (after identifyingAnn(7) = IF in the obvious way). For instance, far = 4 the
corresponding polynomidl is given by

2

and it can be seen that; is not dfinely homogeneous. Notice that the quadratic paft isfa
degeneratguadratic form orker (), in contrast to the commutative case below.

1 1
f(r) = 6961290239634 + = (213234 + T12%24) + T14

In caseN is commutative, for every projectionon .\ with rangeNj;) = Ann(N) itis
well known that for theV;)-valued symmetric 2-form

(2.5) by : N x N = Ny, (z,y) — w(zy)

the radical{z € N : b;(z,N) = 0} coincides with\/; (for a simple proof compare e.g.
Prop. 2.1 in [6]). In particular, the form, is non-degenerate ar1(0) = N/Npj. TheNpy-
valued polynomiaF = moexp, has a unique decompositidn= 3", -, fI* into homogeneous
components *! of degreek. Clearly, fl!l = 7, fI2/(z) = Lb, (2, 2) andf)(z) = 2*) for all

z e Nandv = v(N). o

From now on we assume thaf is a commutative nilpotenalgebra. In this paper we
investigate properties o¥/, the polynomialsf and the corresponding nil-surfacesAfin a
fairly general algebraic setting. Our motivation howevemes from complex geometry. For
instance — as already mentioned in the introduction — exealhyperquadrid” in a complex
projective spac®,, (C) gives rise to several (real and complex) commutative reipbalgebras
N Roughly speaking, the varietie. in caser(N) = A[y; occur as building blocks of bases
F c IR" in various tube representatiolsx iIR" c C" of the CR-manifoldY’, compare [5].
Another source of commutative nilpotent algebras arisésditontext of isolated hypersurface
singularities, compare [6].
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With A'° := TF-1 & M we denote theunital extensiorof N/, having1 as unit. This
notation has been chosen since then the canonical filtratitemds as

NOONYD - NFD o with NINF C NITE

N = N andN %N 1 = TF. Clearly, N is the unique maximal ideal 0¥ °. In caseN =
N1 &Ny @ ... & Ny for linear subspaced/;, and a fixed integed > 1 we can write every
x € N astupler = (x1,za,...,x4) With x;, € N, and then

exp(x) = Z W e 1+N c N,

pelN?

wherez(®) = g2 W) for all 4 = (uy,. .., ug) and notation (2.1) is in force.

For every nilpotent algebt&” the Hilbert functionH = H,, : IN — IN of A/ ? is defined
by H(k) = dim(N*/N*+1). Clearly, H(0) = 1 < H(v) for v := v(N), andH (k) = 0 for
kE > v. As usual, we writeH also as finite sequencg? (0), H(1),...,H(v)} and callH
symmetricif

(2.6) Hk)=H(v—k) forall 0<k<v.

The Hilbert function is a rough invariant for nilpotent atgas that in general does notfce
to distinguish two given algebras.

The complement oV in A is the maximal subgroup d¥ °. A special subgroup is the
unipotent group/ := 1+ N. The exponential mappingp : N' — U is a group isomorphism
with inverselog , wherelog(1 + x) = log, (z) forallz € .

With Aut(N') we denote the algebra automorphism group\af The endomorphism
algebraEnd(N') endowed with the commutator produet o] = Ao — o\ is a Lie algebra
that we also denote byl (). With der (M) C gl(N) we denote the Lie subalgebra of all
derivations. This is aV °-leftmodule in an obvious way. For every nilpotent der (A) the
operatorexp(A) € Aut(N) is unipotent and conversely, every unipotent Aut(N) is of
this form.

Derivations of\V can be obtained in the following way: Letbe a projection o\ with
rangeN[;) and suppose that € End(\) satisfies\(A') € N andA(N ?) = 0. Then for
everya € Nz the operator: — ax + m(ax) 4+ A(z) is in der (N). This implies

(2.7) dimder (A) > (dim N /N ?) dim Ny + dim (Vs /Ny) -

This estimate improves Theorem 5.4 in [10], which gives isecaf algebraically closed base
field (and finite dimension) the lower bound (2.7) without seenmandlim (N3 /Nz)). Also

dimder (N) < (dimN /N ?)dim N

always holds since every derivation 6f is uniquely determined by its values on a linear
subspacd. with A" = L + N2, The latter inequality is an equality e.g.Af = m /m* with
k>2andm C F[T},...,T,] a maximal ideal.

3. Affinely homogeneous surfaces

For the rest of the paper we consider only nilpotent algetivaisarecommutativeThe
algebras of finite dimension of this type are precisely tha&imal ideals of commutative Ar-
tinian local algebras.

It is well-known that the graply := {(z,t) € V& IF : t = q(x)} of every quadratic
form g on a vector spac¥ is afinely homogeneous. On the other hand, for given vector space
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W of finite dimension, the vast majority of smooth algebraipérgurfaces i’ of degree> 2

is not dfinely homogeneous. In fact, it is not easy to find iimaly homogeneous hypersurface
of higher degree at all. In this section we show that the unifexes associated with a certain
class of commutative nilpotent algebras are dfinely homogeneous varieties and can have
arbitrary high degrees. More precisely, we have a posi@gelt in case wher&” admits some
sort of aZ™-grading.

3.1 Definition. Let N be a nilpotent algebras a projection on\V and N = @, .+ N a
vector space decomposition. This decomposition is called

e a gradingif
NNy C Ny forall j, k>0,

e ar-gradingif
NN ¢ PN, forall j>0 and

>3
W(Afjl'j\/}z' ’ N]r) - 7T('/\/jl-‘rj2-i-...-‘rjr)

holds for every finite sequenge, jo, . .., j, in Z*.

A quite special sort of grading is what usually is calledamonical gradingTo every
nilpotent algebraV” associate the graded algebra

gr(N) = PN NHHL,

k>0

where for everyj, & > 0 and everyz € N7, y € N'* the product of the residue classes
4+ NI+ and y+N**1is oy+ NI TR+ tis quite rare thatV” andgr () are isomorphic as
algebras. But if there exists an algebra isomorphism\V' — gr(/N\), the gradingV' = @ Ny,
with V, = ¢~} (N*/Ak+1) is called a canonical grading. Clearly, = 0 for all k& > v(N)

in this case.

Gradings andd-gradings on\ coincide. Graded nilpotent commutative algebras ex-
ist for every nil-indexv — for instance the maximal ideal & |[X]/(X"*!) has an obvious
canonical grading. On the other hand, not every nilpotentroatative algebra has a grading,
see Section 8 for counterexamples. In general, a gradalpletent algebra\’ may not have
a grading with\; # 0. A simple example with this phenomenon is the commutatigelaia
N =Tz @ Fy ¢ Fz? @ IFz® with generators:, y satisfyingz? = y3 = vy = 23 — y2 = 0.
Then we get a grading ¥ if we denote the summands successively\3y N3, Ny, Ng. No-
tice that this\/ does not admit a canonical grading. Indeed, the annihdaib\ andgr (/)
have dimension 1 and 2 respectively.

What about fiine homogeneity of,; for arbitrary commutative nilpotent algebrAs
and Myj-ranged projectionsr? For some time the answer of this question was beyond our
reach as all our attempts to prove it for general commutatil@tent algebras (even when
restricted to the special caden(N[y;) = 1) failed in case of nil-index> 5. However, contrary
to the expectation (expressed as conjecture in [7], [Balht@yexamples do exist. Anticipating
the answer, which will be extensively discussed in Sectioneshave:

e There exist commutative nilpotent algebr&s such thatS, is not dfinely homogeneous
(any such algebra cannot be graded).

e There exist commutative nilpotent algebr&swithout a grading but still with ginely ho-
mogeneousy..

Now we resume our investigation by proving the main resuthaf section. For every
pair of vector space¥, W the dfine groupAff(V') acts from the right on the space of all
polynomial mappingg : V" — W and we denote by
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Ap={g € AE(V): fog™t = f}
the isotropy subgroup gt Clearly, A leaves every level sgt'(c), ¢ € f(V), invariant.

3.2 Theorem. Let N' be a commutative nilpotent algebra and projection on\'. Assume
that V' = @ N, is an-grading and that there exists an integer 0 with #(N') c Ny and
7(Ng) = 0 for all k # d. Then forf := m o exp, the dfine subgroupAs C Aff(N) acts
transitively onS = f~1(0).

In caser(N') C Ann(N) the groupAr even acts transitively on every level $et' (c) = S+c

with ¢ € m(N).

Proof. Fix an arbitrary point: € S. For every; > 0 consider the following condition:

(*) Ar(a) "D £

k>j

It is clear that for the first claim in the Theorem we only haveshow thatx) holds for all j
since therd € A¢(a), or equivalentlya € Af(0).

We first show by induction ovef that (x) is valid for everyj < d: Forj = 0 nothing has
to be shown. Now fix an arbitrary integgrwith 0 < j < d. As induction hypothesis we
then may assume € .., Ni. Set\p := IF-1. Everyz € N? has a unique decomposition
r=x0+x1+... Withz, € Ny forallk > 0.n particulara = aj+a;1+... witha, € Ny,
for all k£ > j. We trivially extendf to a functionf on A%, more preciselyf (s1 + x) := f(x)
forall s € IF andx € V. R

Denote byF the space of all polynomial mapg® — N, of degree< d. Thenf ¢ F. We
identify viaz «+ 1+ the nilpotent algebra/ with the dfine hyperplané/ := 1+N in A/°
and Ay with the subgroup

G:={g€GLWN?") : gd) =U and f(gz) = f(z) forall z €U} .

With a; € N from above define = ); € End(N?) by

1
(**) )\(1‘) = aj(—x0+rj2kxk>.
k=1

Then\(1) = —a; € N andA(N) C @, ; Ni. Forg := exp(\) € GL(N°) (A is nilpotent)
we therefore havg(1+a) = 1+b for someb in P, ., ; NVi. It is enough to show € G since
thenb € Ar(a) by the above identifications. The identigyl/) = U is obvious. It remains to
computef og onl. This can be done in terms of the following nilpotent opergte End(F):

E(f)z:= f'(x)(\x) forall feF andzeN©,

where f’(z) € Hom(N % N) is the formal derivative off at z. From A(N%) ¢ N we
conclude that(f) vanishes of{ as soon ag has the same property. For dlle F we have
the generalized Taylor's formula

f o exp(A) = exp(€)(f) = £+ E() + 5E () + - -

It therefore remains to show thaﬁ) vanishes ord/. Now for everyxz € U we havery = 1
and

5(?)35 = chyacgyl)ng) e :Ug/d) ,

where the sum is taken over all multi indicess IN? with 4 + 2vs + ... + dvg = d — j,and
¢, € Nj are certain factors. Fix such a multi indexFor simpler notation we put—1 := 0
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for everyz € N'9. Then we have

d—j
L I N o5k Yo, (mgm g gl ) _l,l(jud)>
k=1
d—j
kv v v 1%
=1

sincev,, = 0 for k > d — j. This proves the induction step and hertegfor all j < d, that is,
we may assume € @, - ; Nx.

To finish the proof of the first statement we notice théfz + b)*) = m(z*) holds for all
z €N,k >1landevery € (id —m) (@, ,Ni). This implies that the translation— x+b
for every suchb belongs toAs. As a consequence we may assume m(N;). Buta is also in
S by assumption and N 7(N;) = {0}, that is,a = 0.

Now supposer(N) C Ann(N') and letB be the subgroup of all € Ar that commute with all
translationst — x + ¢, ¢ € ©(Ny). In every induction step above the operaloranishes on
7(N) c N This implies thaB is already transitive o5 and the second claim follows.]

In the proof of 3.2 we have identifiel” with 1 + A via the identificationr <+ 1+zx.
In caseN; is the annihilator\;; of AV in 3.2, the operaton in (xx) corresponds via the
identification to the fiine transformatior’” : ' — A/, where
(3.3) T= ﬁD —a; with D € der (N) defined by D(z) = a; Z kaxy .
k>0

The proof in [8] for the special case, whekg has dimension 1 and is the annihilator/df is
also based on these nilpotent derivatidhs

For base fieldF € {IR, C} Theorem 3.2 essentially is already contained in [5], se® als
[6] for a special version withE = €. For the special case thaf/\V') is the annihilator of\/
and this annihilator has dimension 1 see also [8].

In Theorem 3.2 the grougy is not the full dfine groupAff(S). Indeed,

(3.4) 0, .= Pttid, € GL(S)

k>0

satisfiesf o 0, = tf for everyt € IF*. As a consequence, if has 1-dimensional range in
Ng N Ann(N), the groupAff(S) has at mostl orbits in V. In particular, in caselF = C

this group has only two orbits iV, the hypersurfacé and its open connected complement
NM\S. IncaselF = IR the connected identity componehff(S)° has three orbits i\, the
hypersurfaces and both sides of the complemenit, S.

In caseN = @ N, is a grading in 3.2, the operator := @, ., kid|y, € der(N)
is diagonalizable ovell" and has only positive integers as eigen-values. Converigely is

an arbitrary (commutative) nilpotent algebra and: oer (N) is diagonalizable ovel with
spectrum irZ*, then\ = @ N, is a grading, whergdV}, for everyk is thek-eigenspace of.

As already mentioned, not every nilpotent algeldfehas a grading, compare Section 8
for counterexamples. But there exists always a decompasiti

(3.5) N = @Nk, with AN C @ Ny forall j,k>0.

kez+ >j+k
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Indeed, chooséV}, in such a way thatv* = A}, @ N**! for all & > 0. In general, a non-
gradable nilpotent algebra may haverayrading with non-trivial projectionr. As a trivial
example for this phenomenon choose for fixed non-grad&bkedecomposition (3.5) and let
7 on\ be the canonical projection ontd,.

The following result gives a lower bound for the size of therBit under the fiine
group Aff(S) in caser has range in the annihilator @f: Fix £ > 0 and consider the ideal
N as defined ir2.2. Then forf := 7o exp, andS := f~'(0) as before the intersection
S N Ny is a smooth subvariety with dimensiaim (N, /Ap). For everya € .S N N3 and
p = (id+n)/2 € End(N) define the ine transformatiork, on N by

he(x) :=2 — plaz) + a .

3.6 Proposition. Let N be an arbitrary commutative nilpotent algebra,rdbe a projection
on N with range in the annihilator ok” and letS := S,. Then{h, : a € SN N[z} is
contained inAr and generates a subgroup acting transitivelySan Nz . In particular,S is
aftinely homogeneous X has nil-index< 3.

Proof. Fix a € S N Ng). Thenh, € Aff(N) since the operator — p(ax) is nilpotent onV.
A simple computation showso h, = f and also that,, h ! leave N3 invariant. The first

a’'’a

claim follows with 7, (0) = a. The second follows fromVj5; = M in case ofv(N) < 3. O

4. Admissible algebras

For the rest of this paper we deal only with commutative riépo algebras\’ of finite
dimension oveiF such that the annihilatok];; is of dimensionl. For simplicity we call such
algebrasadmissible algebra3hese are just the maximal ideals of Gorenstein algebrisitef
vector space dimension 2 overlF.

In this and the subsequent sections we construct severiteppniversally associated
with a given admissible algebrs(. These will encode enough information to characterize the
admissible algebra up to isomorphy. Roughly speaking, ia&la certain family: of smooth
hypersurface$ c N such that each of its members determinéswe also establish a natural
duality between the points of a given hypersurféce . and the members At itself. In the
next section we construct a set bfvalued polynomials, so-called nil-polynomials, closely
related to the hypersurfacése 3. We also determine how the algebra structurd/o€an be
reconstructed from an associated nil-polynonmpidin fact the knowledge of the quadratic and
cubic terms ofp turns out to be dficient.)

We start with some preparations. We call every projectica 72 € End(N) with range
7(N') = N}y anadmissible projectioon N and denote byI(N') € End(N) the subvariety of
all admissible projections. Every € TI(N) is uniquely determined by its kernkl = ker(r)
that satisfies\' = K @ Ay;. Further, every projection < TI(N) gives rise to the algebraic
smooth hypersurface, compare (2.4),

Sy ={r €N :moexp,(xz) =0} = log(kerm)

that we also call anil-hypersurfaceWe denote by-(N) := {S, : 7 € II(N)} the set of
all such hypersurfaces. Note thdt} is the intersection of alb € X (). The canonical map
B : II(N) = X(N), 7 — Sg, is clearly surjective. Later on (see 4.6) we will show tias
even bijective.

All the key objects associated witkl, such as the bilinear formts, : N’ x N — N,
the polynomial mapg, : V' — Ay; and the subvarietieS, C A depend on the choice of the
projectionr. In this section we show that in the admissible case the reisdeproperties of
b,, f. and S, do not depend on the projection and can be considered asaimigmassociated
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to NV only. Further we prove that every smooth hypersurfagedetermines the admissible
algebra\ up to isomorphy.

For everye € N ° define the multiplication operatav/, € End(N) by M, (x) = ex.
Recall thatexp : N — U = 1 + N is a group isomorphism with inverseg.

4.1 Lemma. II() is an dfine plane of dimensiodim(N /N{y;) in End(N). In fact
II(N)={r€ EndN):m=pom, p=mop} forevery pelIl(N)

andN /Ny xTII(N) — TIN), (z+Npy, ©) — mo My o , yields a well-defined simply
transitive action of the vector groug /N, onII(N).

Proof. Clearly, the mapping is well defined, has valueHlt\') and gives an action 0¥ /AVp;.
The action is also free — indeed, suppose thatV/.,,, = 7 for somer € II(N), b € N. For

c := exp, (b) thenm o M, = 0, thatis,b, (c, N') = 0 and thus: € V), see (2.5). But then also
b=ce ./\/’[1} .

The action is also transitive — indeed, fix arbitraryp € II(N). Then) := p — 7 vanishes on
N7 and satisfies. = wo A. Hence, again by the non-degeneracypbnker(r), we conclude
A = 7 o M, for someb € ker 7. Thisimpliesp =7+ 7o My, = mo My = 7 0 Mexp . fOr
c:=log(1+b) eN. O

The algebra automorphism grouput(N) acts onII(N') by conjugation, that is, by
L(r) := LomoL~*forall L € Aut(N) andr € TI(N). ThenL(ker 7) = ker L(7) is obvious.
The groupAut(N\') also acts orE (V) in the obvious way and satisfiég S, ) = Sy, for all
L € Aut(N) andr € TI(N).

The following result generalizes Propositions 2.2. andir2[8].

4.2 Theorem. Let N ,/\7 be arbitrary admissible algebras having not necessardyséime
dimension. Also letr € TI(N), 7 € II(N) be arbitrary admissible projections. Then for
S = S, S := S and for every linear mafp : N' — N the following conditions are
equivalent, providedim(N') > 1.

() L is an algebra isomorphism.

(i) S =L(S—c)forsomec e N.
Furthermore, the point = cy, . » in (ii) is uniquely determined by, 7,7 and coincides with
the unique element i satisfyingm = L o (1 0 Mex, ) o L. Finally

(%) S = {cLJr,p ip € H(N) }

holds for every algebra isomorphish: N' — N.

Proof. (i) = (ii) Assume (i). By Lemmatl.1 there existe € N with L™ o7 oL = 1o Meyp. -
Sinceexp, (¢ + a) = exp,(c) + a for everya € Njy;, we can assume(exp, ¢) = 0, that is,
c € S. Thenr(exp, ¢) = 0 implies

7(expy L(z)) = 7o L(exp, ¢) = L o w((exp ¢)(exp; x)) = L o m(exp,(z + ¢))

forall z € NV, thatis,L(x) € S if and only if z + ¢ € S.

(i) = (i) SincedimA > 1 alsov(N) > 1 and the linear span & is A". ThenL is an
epimorphism and also(N') > 1. We show thatl is also injective: Note first that since the
quadratic part ofr o exp, is non-degenerate der (), S is not invariant under any non-trivial
translation. Ifker(L) # 0 thenL=1(S) = ker(L)+S—c would be Zariski dense iV and a
proper algebraic subset &f at the same time, a contradiction.

SinceL — L(c) provides an fiine equivalence betweehand.S we can use the analytic proof
of Prop. 2.3 in [6] to obtain that is anlF-algebra isomorphism in the special clise= C. We
reduce the case of a general field to this special result byfschetz principle type argument.
To begin with we denote b the set of all subfield& C IF that are obtained by adjoining a

finite subset ofF to the prime field oflF. It is well known that everyK € K is isomorphic to
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a subfield ofC.

Now lete € A be an arbitrary but fixed element. Then itis enough to showithe) = L(e)?:
Choose a linear basi8 of A/ containing a basis of ~*(0) and a basis af/[;;. Then there exists
afieldIK € K such that the linear spah := (B) containse and is alk-subalgebra ofV.
By the choice ofB the intersectior3 N V;) has dimension 1 oveK and is the annihilator of
B. Also, S N Bis a smooth hypersurface OMViEf in 5. In the same way choose a linear baBis
of \/ containing a basis af~*(0) and a basis QN1 Adjoining a suitable finite subset @f
to IK we may assume in addition without loss of generallty hat (B >]K containsc and also
is alK-subalgebra ofV'. EnlarginglK again withinK if necessary, we may even assume that
the dfine transformatiord := L — L(c¢) mapsB onto B. Clearly A mapsS N B onto S N B.

We now consideiK as subfield ofC. We then get the complex nilpotent algebtas € and
B ®x C with annihilators(B N Npp) @ € and(B N Nl]) @k C respectively, each having
complex dimension 1 oveb. ThelK-affine mapA,z extends to &-affine mapB @k € —
B®k C sending the corresponding complex hypersurfaces ontoatheh By Proposition 2.3
in [6] then M| ®K id¢ is an algebra isomorphism, implying(e?) = L(e)?. Together with
the first step this proves (8= (ii).

Next, assume that in (ii) is not uniquely determined. Then there exiatss N with a # 0
andS = S + a. ForK := n71(0) we haveN = K & My andS = {(y, f(y)) : y € K} is
the graph of the polynomial map: K — Ny given by f(y) = —m(exp,(y)). In particular,
f = (b, f(b)) for someb € K and

(%) fly+1tb) = f(y)+ f(tb) forall yekK

and allt € Z. Sincef is a polynomial magxx*) even holds for alt € IF. Comparing terms
that are linear iny as well as int we getr(by) = 0 for all y € K. But the quadratic fornr (y2)
is non-degenerate o6, implying b = 0 in contradiction tof # 0.

Finally, for the proof of(x) we may assuma/ = A andL = idas. Fix an arbitraryc € S and
pute := exp, (¢). Thent(e) = 0 andp := 7 + 7 o M, is an admissible projection ok’. This
implies S, = S — c and consequently = cr, . O

4.3 Corollary. The algebras\', N are isomorphic if and only i§, S are dfinely equivalent.

4.4 Corollary. Under the same assumptions asiB, for every linear maf : N' — N the
following conditions are equivalent.

(i) S=L(S).

(i) L is an algebra isomorphism with= L(r) (= LomoL™1).
Proof. Assume (i). TherL is an algebra isomorphism with = L(w o Mex,.) = L(m) for
¢ = 0 by Theorem 4.2. The converse implication is trivial. O

4.5 Corollary. Aut(N) N Aff(S) = GL(S).

Next we show equivalences between the various sets. Ircplarti for every fixedS €
Y (N), we give a duality between points Fand surfaces i itself.

4.6 Lemma. (Duality) Let N be an admissible algebra ande T1(N). Then the mappings
ap Sy —  T(N) B I(N) — Z(N)
S '_>7TOMexps’ p SP

are bijective and satisfy o a,(s) =S, —s foralls e S;.
Proof. Let p = 7 o My, s With s € S.. Thenz € S, is equivalent to

0 = m(exp(s) expy (x)) = m( exp, (z + 5) — exp, (5))

and hence tdz + s) € S, sincer(exp,(s)) = 0. Bijectivity of a, follows from the proof
of 4.1 and the fact that,. as graph has the following property: Everye A is a unique sum
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r = a+bwith a € Ny andb € S;. Surjectivity of 5 holds by definition and injectivity
follows from 4.4. O

Our next goal is to investigate the behavior of the abovelsedsr algebra isomorphisms.
Obviously, algebra isomorphisms are functorial in the sehat for every such isomorphism
L : N'— N one has the following well-defined maps (also denoted bydheedetterl):

L:X(N)— XWN) L:TI(N) — II(N)

.7 S — L(S)’

7 —>LomolL ™!
(4.8) with L(Sﬂ-) = SL(W) .

In particular, we have in case ¢8f = N the group action of the algebra automorphism group
Aut(N) € GL(N) on the diine planell(N) by conjugation, that is, by.(7) = Lomo L™1
forall L € Aut(N) andn € II(N). Also the dfine groupAff(S) acts canonically on the
hypersurfaces € () and we show next that both group actions are equivariantiwvatent,
more precisely, define the following map

v Aut(NV) — AF(N), L—~(L):=L-L(cpnn),

with ¢y, - » € S asin Theorem 4.2, see also the first part of its proof.

4.9 Proposition. Let N be an admissible algebra,c T1(N'), S := S, andy as above. Then
~ induces a group isomorphisfnt(N') — Aff(S). Furthermore, the diagram

Aut(N) x TIN) —s TI()
bl e
AfE(S) x S — S

commutes and has bijective vertical arrows, while the lootizl arrows represent the respective
group actions.

Proof. For A := (L) we haveA(S) = L(S — ¢y ,») = S by (i) of 4.2, i.e.,y yields a map
Aut(N) — Aff(S), which by Theorem 4.2 is a bijection ontdf(.S) . The inverse ofy is just
the mapping that associates to evene Aff(S) its linear partL := A — A(0). This implies
that~ is a group isomorphism. The commutativity of the diagramlzaeeen as follows: Direct
conseguence of 4.8 is the commutativity of the diagram

Aut(N) x ZA) — DN
I 15 15
Aut(N) x II(N) —s TI(N)

with bijective vertical maps. Hence, itfices to prove the commutativity of

Aut(N) x SN) —s SN

1y TBoar TBoas
A(S) x S — S

According to 4.6 and 4.2 we have for arbitratye Aut(N) andt € S = S,

( L ,S—t) — L(S)—L(t) =S+ L(cL,xx) — L(t)
17 Tﬁ O Qg Tﬁ O Qp
(L—L(cpmn), t ) — L{t)—LlcLnqx) - '
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Remark. Proposition 4.9 remains true also in the trivial casei(N) = 1, although thenS
consists of a single point antiut(N') = GL(A) holds. Indeed, by our definition in this case
Aff(S) = GL(N) as well. In all other casesy is total in /V and Aff(S) acts dfectively on
S. The proposition implies that the orbit structure foff (S) in S is isomorphic to the orbit
structure forAut(N) in II(N). In particular, both group actions @fut(N') and Aff(S) are
transitive as soon as one of it has this property. For theigpegselF = IR or IF = C this

is essentially the content of Theorem 2.3 in [8]: There thecsfl of all hyperplanes inV
transversal toV[y; is introduced, which viar <+ ker(7) can be canonically identified with our
spacell(N). In addition a certain subgroufi, C Aff(S) is introduced, and as Theorem 2.2
in [8] it is proved thatAut(N') acts transitively o if and only if G,; acts transitively orf.
Then Theorem 2.3 says, = Aff(S) in case of base fieltR or C.

Theorem 4.2 together with Proposition 4.9 implies the feifa result.

4.10 Corollary. For every admissible algebsd the following conditions are equivalent.
(i) For some (and hence every)e 11(N') the hypersurfacé,. is affinely homogeneous.

(i) Forallw, 7 € TI(N) the hypersurfacesS,, Sy are linearly equivalent.

(iii) The groupAut(N) acts transitively odI(N).

(iv) The groupAut(N) acts transitively or®2(N).
Proof. (i) = (ii) Let w, 7 be admissible projections and assume thais afinely homo-
geneous. The; = S,—c for somec € S by Theorem 4.2. For everyt € Aff(S,) with
A(0) = ¢, the linear transformation — a(x)—c mapsS, onto.S;.

(i) = (i) Assume (ii) and fixr € TI(N) together with an arbitrary poirte S,.. By Theorem
4.2 there existsr € II(N) with S; = S,.—c. By assumption there exists € GL(N) with
9(Sz) = S%. The transformation: — g(z)+cis in Aff(S,) and maps the origin te.

(i) < (iii) This follows immediately from Proposition 4.9. (iiR= (iv) istrivial. O

As an immediate consequence of Theorem 3.2 we state:

4.11 Corollary. For every graded admissible algebvaconditions(i) - (iv) in 4.10hold. O

Proposition 4.9 says, in particular, that the grodps (N') andAff(S) are isomorphic. A
careful inspection of the corresponding proofs revealsuhder the assumptions of Theorem
3.2 and of Proposition 3.6 these groups contain unipotdsgrsups of dimensiodim(N)—1.

In caseN has a grading, we even géim Aut(N) > dim(N) since therf; € Aut(N) as
defined in (3.4). The same argument gidés der (A) > dim(N) = dim(N°) — dim(Npy))

in the graded case, compare also Proposition 2.3 in [12] $e Ba = C. For every cyclic
nilpotent algebra\’ equality holds.

The infinitesimal analogon.As shown in 4.9 the group&ut(N), Aff(S) are always isomor-
phic. In casdF = IR, C these groups are even isomorphic as Lie groups, implyinigtifesm
also the corresponding Lie algebras (), aff (S) are isomorphic. Besidext (N) also a
Lie algebraaff (S) can be canonically defined for arbitrary base fields, butaripitiere is no
reason why these Lie algebras should be isomorphic alsc#ilicgZ IR, C:

Fix an admissible algebrd” and an admissible projection on N. PutS := S, that is
S = f~1(0) for f := woexp,. Foreveryr € SthenT,(S) := ker(f'(x)) is thetangent space
atz, wheref’(z) = 7 o Mexp, € End(N) is the formal derivative of atz and, as defined
above,M, € End(N) is the multiplication operatot — yz.

Denote byaff (S) the linear space of allfine transformations! : A” — N that are 'tangent'
to S, that is, satisfyA(x) € T,(95) for all z € S. Thenaff(S) is a Lie algebra with respect
to [A,B] = A’ o B — B’ o A, where the derivativel’ = A — A(0) is the linear part ofd. A
subalgebra igl(S) := gl(N) N aff (S).

4.12 Proposition. For everyD € End(/N) the following conditions are equivalent.
(i) D € ver(N).
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(i) D —v € aff(S) for somev € N.
Furthermore, the vectar = vy, _in (i) is uniquely determined by and coincides with the
unique element in ToS = ker 7 satisfying[r, D] = m o M,. AlsoD — D — vy, . induces a
Lie algebra isomorphisriiet (N) 5 aff (S).
Proof. Assume (i). TherD (V1)) C N for the annihilatorV};; and hencer+ [, D] € TI(N).
By Lemmad4.1 there existe € N with 7+ 7, D] = moMex,, ., thatis,[m, D] = wo M, forv =
exp, (c). Itis no restriction to assume € ker(mw) = T(S. Consider the fine transformation
A:=D —vonN.Then(expx)D(z) = D(exp; x) andrw(vexp z) = m(vexp; ) imply

(T 0 Mexpo)A(z) =70 (D — M,)(exp; z) = D o w(exp, ) = 0

forall z € S. This meansA(z) € T,.S and (ii) is proved.

Assume conversely (ii). We have to sh@(c?) = 2¢D(c) for all ¢ € N In caselF = C this
follows with the dfine vector fieldt := (D(x) — v) 9/, on N and applying Theorem 4.2 to
the 1-parameter subgroepp(t£) of Aff(S). The case of general base field can be reduced to
C by a Lefschetz type argument similar to the one used in thef mfot.2, we omit the details.
Also the remaining claims follow as in the proof of 4.2. O

5. Nil-polynomials

For every admissible algebys with annihilator\};; we call a linear formo : N — TF
a pointing on\ if w(N}y)) = TF (in analogy to function spaces where points in the undeglyin
geometric space induce linear forms with certain propgxti@lso, N with a fixed pointing is
called apointed algebraor every vector spadd” of finite dimension we denote B [IW] the
algebra of all [F'-valued) polynomials ofl. Since in characteristic zero every field is infinite,
we do not distinguish between polynomialslitji¥’] and the polynomial functiong/’ — IF
they induce.

5.1 Definition. p € IF[W] is called anil-polynomial associated to the admissible algelAfa
if there exists a pointing on ' and a linear isomorphism : W — ker(w) € N such that

p = w o expy o p.
Notice that we do not exclude the trivial cadé = 0 with nil-polynomial p = 0. Let us
agree that thip has degree-occ.

To every pointingw on the admissible algebr® there exists a unique admissible pro-
jection7 on NV and a unique linear isomorphisti : Ny — IF with w(z) = y(7z) for all
xz € N, and conversely, every pointing avi is obtained this way. Ta we have associated the
hypersurfaces,, C N, compare (2.4). It is easy to see that for the nil-polynorpiatcurring
in 5.1 the hypersurfacg,, is linearly equivalent to the graph

I, ={(z,t) eWaTF:t=px)}.

5.2 Definition. We say that an admissible algebvahasProperty (AH) if for some (and hence
every) nil-polynomialp associated tdv" the grapHt’,, is afinely homogeneous, or equivalently,
if one of the equivalent conditions (i) - (iv) in Corollaryl is satisfied.

5.3 Definition. Two nil-polynomialsp € IF[W], p € IF[W] are calledlinearly (afinely)
equivalentf there exists a linear (@ne) isomorphisny : W @ IF — W & IF mappingl, onto
T.

5.4 Proposition. The nil-polynomialsp € TF[W], p ENF[W] are linearly equivalent if and
only if there exists a linear isomorphism : W — W and ane € GL(IF) = F* with
N —1

p=copoa .

Proof. Assume thaip, p are linearly equivalent. Then there existe Hom(W, W), B e
Hom(IF,W) as well asy € Hom(W,IF), 6 € IF such that(x,t) — (az + Bt,yz + ot)
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establishes a linear equivalerige— I'5. The ideal inlF'(W @ IF) of all polynomials vanishing
onT}, is generated by—p(z). As a consequence we have for a suitabte I

(yx +t) — plax + ft) =e(t — p(z)) forall (z,t) e WaTF.

Theny = 0 and hencex is invertible. Denote by, g the quadratic parts of, p. Theng(ax +
pt) = eq(x) for all z, ¢t implies 5 = 0 since the quadratic forrg is non-degenerate O .
Thenp(ax) = ep(x) proves the first claim. The converse is obvious. O

As a consequence, every equivalence class of nil-polyrienmd[1/] is an orbit of the group
IF* x SL(W) acting in the obvious way ol [IV].

Corollaries 4.3 and 4.10 immediately imply the followingué.

5.5 Proposition. Let p, p be nil-polynomials associated to the admissible algels;’ra/&7 . Then
(i) NV, N are isomorphic if and only ip, p are dlinely equivalent.
(i) In caseN hasproperty (AH)(for instance, iftN" admits a grading) the(i) remains true
with ‘affinely’ replaced by ‘linearly’.

For any pair of admissible algebras, A" with nil-polynomialsp € IF[W], p € IF[W]
Proposition 5.5 has the following obvious consequence.

5.6 Corollary. If N hasproperty (AH)and\/, N are isomorphic, then there existsana IF*
and a linear isomorphism : W — W with p/*! o o = ¢ pl¥! for all k, wherepl*! is the
homogeneous part of degrkeen p.

For2 < k < v(N) the homogeneous polynomial! is non-zero and gives a projective
subvariety in the projective spai&(\') associated td/. All these varieties then are invariants
for the algebra structure @f, provided N has property (AH). It is worthwhile to mention that
this remains true for the leading homogeneous part als@igeheral situation, more precisely:

5.7 Proposition. The statement ofCorollary 5.6remains true fok = v(N') even without
requiring that\" hasproperty (AH)

Proof. Assume thatL : N' — A is an algebra isomorphism. The¥i, N have the same
nil-index, sayr > 2. Without loss of generality we may assume that there aretipgsiw,
&onN, N with W = ker(w), W = ker(@) andp = woexpg, p = woexpy, on W, W.
Because ofL(Nj;)) = Ny there is are € TF* with G(L(a)) = cw(a) for everya € Npy;.
Further, there exists a linear isomorphism: W — W and a linear map\ : W — Ay
with L(z) = a(z) + A(z) for all z € W. But thenp™!(az) = &((az)¥)) = &((Lx)™)) =
w(L(z™)) = ew(z™)) = epl’(z) sincez™ € Ny;. O

We illustrate by an example how 5.7 can be applied to provetiiagiven admissible
algebras are not isomorphic: Anticipating notation of #&c8, see 8.2, consided(Z3 +
Y44+ X3Z + X3Y2 + XY Z) and M(Z3 + Y* + X3Z + X2Y Z + X3Y?). These are
admissible algebras of dimension 20 with nil-index 6, badlkihg the same Hilbert function
{1,3,5,5,4,2,1}. It can be seenthat both algebras do not have property (AH), compare also
with Section 8. Leading terms of nil-polynomials p € F[zy,...,x90] are, for instance,
pl% = zix3 (for the first algebra) an@l®l = x$(1927 — 90z 25 + 135:::2) (for the second).
Since the quadratic factor B is not the square of a linear form we conclude with Propasitio
5.7 that the algebras are not isomorphic.

Remark. There is a geometric interpretation of the leading homogesdermp*!: Iden-
tify W in the standard way with anffane open subset in the projective spdeélF ¢ W).
HencelP(IF @ W) = W U IP(W), whereIlP(W) is the projective hyperplane at infin-
ity. The zero setl’ := {p = 0} C W is linearly equivalent to{f = 0} N (W) where
¢ : W — ker(w) C N is the linear isomorphism from definition 5.1. Consider trai2ki
closureCY¢(T) c IP(IF & W). Then the set of points at infinitf> := C¢(T) N IP(W),
coincides with{[z] € IP(W) : pl*I(z) = 0}. For a not algebraically closed fielfl then7>
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encodes in general less information then the homogeneatg!pa Indeed, for instance in
caselF = IR the quadratic factor i/ above is positive definite ofR?, that is, the zero
locus ofpl® in the real projective spadB o (IR) is the hyperplandz; = 0}. This suggests to
consider projective varieties defined by ti&! (or pl*!, & < v) only in case of algebraically
closed base fields. In such a situation the correspondingodivather then the mere zero set is
an invariant equivalent tp!!.

Every nil-polynomialp associated td/ depends odim(N') — 1 variables. Another type
of polynomial, closer to (2.3), can be defined as follows:

5.8 Definition. The polynomialf € IF[V] is called anextended nil-polynomiaéssociated
to ), if there exists a linear isomorphisp : V' — A and a pointingo on N such that
f=woexpop.

Itis clear that for the linear paft!! € TF[V] of f the restriction off to W := (f11)~1(0)
is a nil-polynomial associated " and that the graph, ¢ W & IF is linearly equivalent to
the hypersurfacé —1(0) c V. Conversely, every nil-polynomial € IF[IW] associated ta\
can be extended bf(x,t) := p(z) + ¢ to an extended nil-polynomidl € IF(W ¢ IF).

For a given pointed algebri@V, w) fix a nil-polynomialp = w o exp, 0 € IF[IW]in
the following and define the symmetrieform w; on W by

(5.9) wr(Ty, o, ..., x8) = w((cpa:l)(@ajz) e (cpa:k)) .
Then we have the expansign= )", ., pl*} into homogeneous parts, where

(5.10) pFl(z) = %wk(ac, )

andws is non-degenerate of. Using p!? and p!*! we define a commutative (a priori not
necessarily associative) proddet y) — z-y on W by

(5.11) wo(xy, 2) = ws(z,y,2) forall ze W
and also a commutative product @n @ ¥ by

(512) (st)(yvt) = (l"@/,(z)g(l‘,y)) :

For K := ker(w) there is a unique linear isomorphisfn: IF — A; such thatr = 1 o w is
the canonical projectioll © Nj;; — ANjy;. With these ingredients we have

5.13 Proposition. With respect to the produ€b.12)the linear map
WelF = N, (z,s)— o) +9(s),
is an isomorphism of algebras. In particuldf, with productx-y is isomorphic to the nilpotent
algebra\ /Ny and has nil-index (N')—1.
Proof. For allz,y € W we have
(p(x) + () ((y) + (1) = (N — A) + A with

N :=op(@)p(y) €N and A := m(p(x)p(y)) = P(wa(z,y)) € M-
It remains to showV — A = (z-y). But this follows from

N—-AeKk and w(p(xy)p(z) =w(e(@)ey)e(z) =w((N - A)p(z))
forall z ¢ W. O
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5.14 Corollary. Every nil-polynomialp on W is uniquely determined by its quadratic and
cubic term,pl? andp!®!. In fact, the othep!*! are recursively determined §%.10)and

(5.15) wr+1(o, 1, ., Tk) = wi(To-x1, T2y -, Tk)
forallk > 2 andxg,x1,...,x, € W.

Corollary 5.14 suggests the following question: Given a-degenerate quadratic form
g and a cubic forme on TW. When does there exist a nil-polynomjalkc IF[IV] with pl? = ¢
andpl®l = ¢? Usingq, c we can define as above fér= 2,3 the symmetrick-linear form
wr on W and with it the commutative produety on 1. A necessary and ficient condition
for a positive answer is thdl” with this product is a nilpotent and associative algebra. As
a consequence we get for every fixed non-degenerate quatbati g on W the following
structural information on the space of all nil-polynomialsn W with pl?! = g : Denote byC
the set of all cubic forms oli’. ThenC is a linear space of dimensidfi;*), n = dim W, and

(5.16) C, := {c € C : 3 nil-polynomial p on W with pl?l = g, pl3 = ¢}

is an algebraic subset.

6. Representations of nil-algebras and adapted decompoisihs

In the following letA be an arbitrary commutative nilpotent algebra &ralvector space.
Also let
N:A— End(E), x = Ny,

be an algebra homomorphism. For example, every commutatebdrad admits the faithful
left-regular representatioh: A — End(A°), whereA° is the unital extension ofl. Consider
the following characteristic subspaceskf

B:=(N,(E): € A and K:= () ker(N,).
z€A

Let us call every decomposition
(61) E:Eg@El@EQ@Eg with B:EQ@Eg,K:Eo@Eg

an N-adapted decompositiaot E. It is obvious that starting witlit; := B N K and choos-
ing successively suitable linear complemedits E, andE; one always obtains al-adapted
decompositions foE. Clearly,E, = 0 if the image algebrd/( A) is maximal among all com-
mutative nilpotent subalgebras Bhd(E).

Now assume thaE has finite dimension and that a non-degenerate symmetiieail
form h : E x E — IF is fixed such that everyi,, is selfadjoint with respect té: For every
T € End(E) the adjoint7™ is defined byh(Tv,w) = h(v,T*w) for all v,w € E. The
orthogonal ‘complement’ of every linear subspdce- EisL* := {v € E : h(v,L) = 0}.
The linear subspade is calledtotally isotropicif . c L*.

6.2 Proposition. There exists arN-adapted decompositiof®.1) that is related tah in the
following way:

() The three subspacg&s, E,® Ez andE, are mutually orthogonal with respect o

(i) The subspacds, andE5 are totally isotropic, and hence have the same dimension.

Proof. Choose an arbitrariy-adapted decompositid = Eq ¢ El S E, ®E3. Since everyv,
is selfadjoint we hav& = B-. In particular,E; is totally isotropic. We get furthetim(E) =
dim(K) + dim(B) , dim(E;) = dim(E3), Eg ® E; ® E3 = Es and that the three spacgs,
E,, E5 are mutually orthogonal.
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Further we conclude frofi,NEy ¢ Bt = K thatE;NEy € Ey, N K = 0. In the same
way we conclude fronE,NEg ¢ K+ =B thatE,NEj ¢ EoNB = 0. As a consequence
we get (EfNEy) N E3 = E; andEg + E5 = E. Now choose a linear subspake C
(Eg NEz) with E; @ E3 = Eg-NEy. Counting dimensions we gétm(E;) = dim(E; ) from
dim(Eg NEy) = dim(Eg ) +dim(Ey ) —dim(Eg +E3 ) and thus thall = Eg®E; ®E,®E; is
an N-adapted decomposition satisfying (i). The fohris non-degenerate diy, ¢ E3. Because
of dim(E;) = dim(E3) we finally may assume without loss of generality that &sas totally
isotropic. O

We call everyN-adapted decomposition satisfying (i), (ii) above(&h h)-adapted de-
compositionof the representation spatie In the following we give two applications:

Let V' be an admissible algebra with pointing Clearly, in general the quotietit := A/ Ay

is a non-admissible nilpotent algebra, say with producty) — x e y. Left multiplication
yields a (non-faithful) representatidvt : B — End(B) in terms of the multiplication operator
N, : y — x e y. Further, the symmetric bilinear form(x,y) = w(xzy) on N factors to a
non-degenerate symmetric bilinear fofmon A//Nj;; and all N, are selfadjoint with respect
to h. Note that\V" is isomorphic toq N /N;)) x TF with multiplication given by

(6.3) (z,a) o (y,b) := (Nu(y), h(z,y)) = (Ny (), h(y, x)) .

Instead of\V'/ A}y we use the isomorphic algebVd := ker(w) with productz-y, as given in
Proposition 5.13. Then the formis the restriction ob to W. If A has nil-indexv > 2 then
the subalgebraV(W) C End(W) has nil-indexv—2. If W = Wy & W1, & Wy & W3 is a
(W, h)-adapted decomposition, theW := W, & Wy & W3 @ Ny andN” := Wy @ Npy; are
admissible subalgebras with\’’) < 2, and\ is a smash product ¢f” with A"/, as defined
in Section?.

6.4 Proposition. Every admissible algebra of nil-index 3 has a grading.

Proof. As indicated abové\/ is isomorphic tdV x IF with product 6.3 wher&/ = ker(w) C
N is the nilpotent subalgebra isomorphicA6/Ajy;. Let N : W — End(W) as above and
consider the subalgeb(W) C End(W). LetW = Wy & Wy @ W, & W3 be a(W, h)-
adapted decomposition. SinégW) has nil-index< 1 we haveWW, = 0. PutA\; := Wy,
Ny := W3, Ng := Ann(N) and N := Wy. ThenN = N, & N3 & Ny & N is a grading of
N. O

The estimate/(NV') < 3 in Proposition 6.4 is sharp as a counterexample in Section 8
with nil-index 4 and dimension 8 will show.

The next result improves Proposition 3.6 in the case of aslbisalgebras.

6.5 Proposition. For every admissible algebid and everyr € TI(\) there exists a subgroup
of Aff(S,) acting transitively orb, N Ny . In particular, N hasProperty (AH)if N has nil-
index< 4.
Proof. PutS := S, as shorthand and denote bythe restriction ofb, to W := ker(mw).
As above,N, € End(W) is the multiplication operatoy — x-y. Choose g§W, h)-adapted
decompositionV = Wy, @ Wy & Wy & W3 and denote byr, € End(W) the canonical
projection with rangéVy, for 0 < k < 3. Then(Wy + W3)-W = 0, W-W C Wy, & W3 and
W' Wy C W3, whereW’ := Ny NW.

Now fix a pointa € SNW’. Because of Proposition 3.6 it is enough to shdw) € N
for someg € Aﬂ“(S)mAﬂF(N[A%) : PUtP := w30 N.omy —mgoN.omy forc:= a—m(a) € W'.
ThenP* = —P andQ := N, + ¢P € End(W) is nilpotent with Q(W) C M. Set
NO:=TF1& W &Ny and define\ € End(N ) by

(s1,z,t) = (0, Qz — sc, h(c,x)) forall s € IF,z € W, tec Npy.

A is nilpotent and map4/® to V4. Therefore the unipotent operatpr= exp(\) € GL(N?)
exists. Clearlyl{ := 1 + N and1 + N areg-invariant.
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We proceed as in the proof of Theorem 3.2. DenoteFbthe space of all polynomial
maps\ ® — M) of degree< 4 and define the nilpotent operatpre End(F) by

(Ef)(2) := f'(z)(\2) forall feF andzeNO.

We claim thaty leavesl + .S invariant. For this we only have to show thfeftvanishes ol +.5,
wheref € Fis defined byf (s, z,t) := t + 7(exp, ). But this just means that

h(c — Qx,x + I Nyx + 1 N?z) = h(c,z)
holds for allx € W, or equivalently
h(2Qz — Nex,2) = h(3Qx — Nz, Nyx) = h(Qx, N*z) =0 .

The first term vanishes sinc& — N, is skew adjoint. The two other terms vanish since
3Qx — Nex € Njgy and Qz € N3). This proves the claim, and as a consequence we get
gl +a)=1+bwithd € (cW + W3+ Npy)) C N O

We conclude the section with a lower bound for the dimensforee(N) and Aut(N).
For fixedn € II(\), by the proof of Lemma 4.1 every € Hom(N, NVpy;) with A(Vpp) = 0
is of the form\ = 7w o My, b € ker 7. Thereforec — 7 o M, induces for everys > 0 a linear
isomorphism\ /A1) = Hom (N /N*, V). This implies

dim MV + dimAN* = dim A +1 forall 0 <k <v(N).

As a consequence we get from Proposition 6.5 the

6.6 Corollary. dim Aut(N) > dim N /N* for every admissible algebrd. The same lower
bound holds for the dimension @fx ().

Proof. In casev(N') < 4 the algebraV is gradable by Proposition 6.4 proving the claim. In
casev(N') > 4 Proposition 6.5 together witfim (N /A7) = dim(N/N*) implies

dim Aff(S;) > dimN/N* + dimGL(S;), thatis

dim Aut(N) > dim N /N?* + dim {g € Aut(N) :gom =710 g}

as a consequence of Proposition 4.9. The estimateetd/\/) follows with 4.12. O

7. Some examples

For every admissible algebys and associated nil-polynomial the degree op is the
nil-index of A, provideddim A > 1. In the following we give a method how large classes of
nil-polynomials of degrees 3 and 4 can be constructed.

Nil-polynomials of degree 2 on a given vector spéice# 0 are quite obvious —these are
precisely all non-degenerate quadratic foigren 1. Theng is associated to the admissible al-
gebra\ := W & TF whose commutative product is uniquely determined-y)? = (0, g(x))
for all z € W andt € IF (special case of 6.3). Clearly/ is canonically graded by = W
and N, = IF. Notice that in every dimension > 2 the number of isomorphy classes for ad-
missible algebras with nil-index 2 is: 11 is algebraically closedn /2| if IF is the real field;
infinite if IF is the rational field.

For every pair of nil-polynomialg’ € IF[IWW’'], p” € IF[W"] we get a new nil-polynomial
p:=p @®p' e F[W & W"] by settingp(z’,z") := p'(z') + p”(2”) for all 2’ € W’ and
2" € W”. Let us call a nil-polynomiareducedsf it is not affinely equivalent to a direct sum
p’ @ p” of nil-polynomials withp” of degree two. Then it is clear that every nil-polynomial
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p is dfinely equivalent to a direct supl @ p” with p’ reduced angh” of degree< 2. The
nil-polynomialsp’, p”’ are uniquely determined up tdfime equivalence.

On the level of algebras the direct sum of nil-polynomialsresponds to the following
construction: Le{N”,w’), (N, w") be pointed algebras. Théh:= {(s,t) € ;) x A, :
w'(s)+w”(t) = 0} isanideal iV’ x N and\ := (N’ x N"") /Z becomes a pointed algebra
with respect to the pointings,t) + Z — w'(s) + " (t). We write ' = N/ v N and calll
it the smash produatf the pointed algebra&/;. This product is commutative and associative
in the sense that\V; vV N3) vV N3 andN; Vv (N, v N3) are canonically isomorphic. We call
the admissible algebr&” reducedif it is not isomorphic to a smash produsf; v N> with
v(N2) = 2. Notice that every admissible algebké of dimension one is neutral with respect
to the smash product, that i8] v NV = N. Notice also that any smash product of gradable
admissible algebras is also gradable.

Nil-polynomials of degree 3

Letp € IF[V] be a homogeneous polynomial of degiiee 2, thatis,p(z) = q(x,...,z)
forall z € V and a uniquely determined symmetdidinear formg : V¢ — IF. Thenp s called
non-degenerat V,) = 0 for

Vpo ={aeV:qaV,...,V)=0} = {aeV:plx+a)=p(z) forall z e V}.

7.1 Proposition. Let W be anlF'-vector space of finite dimension amda non-degenerate
quadratic form oV . Suppose furthermore th&#t = W, @ W5 for totally isotropic (with
respect taqy) linear subspacéd’,, and that is a cubic form oV, . Then, if we extend to W
by c(xz + y) = c(x) for all x € W1,y € Wy, the sump := q + c is a nil-polynomial oriV,
andp is reduced if and only i€ is non-degenerate dir,. For all cubic forms, ¢ onW, with
nil-polynomialsp = g+ ¢, p = q+ ¢ and associated admissible algebkas\ the following
conditions are equivalent:

() ¢ = cogforsomeg € GL(W).

(i) NV, N are isomorphic as algebras.
Proof. ws(z,y,t) = 0 for all t € Wy impliesW-W C Wy andW-W, = 0, that is,(z-y)-z =
0 for all z,y,z € W, see (5.11). This implies that := g + c is a nil-polynomial. Fix a
decompositioriVy, = W| & W/ with W/’ := {a € W; : ¢c(z + a) = c(z) forall x € W1}.
Then alsdV{ = {a € W; : a-W; = 0} and we put

Wy ={yeWy:y LW/} and W) :={yeWy:y L W/}.

Then forW’ := Wi @ Wy andW"” = W{" @ Wy we have the orthogonal decomposition
W =W"a W"” with WW"” = 0andW-W C Wj. Denote byp’ andp” the restriction ofp

to W’ andW" respectively. Themw = p’ @ p” as direct sum of nil-polynomials ang’ has
degree< 2. These considerations show thais reduced if and only i#¥]" = 0. It remains to
verify the equivalence of (i) and (ii).

(i) = (i) There exists a unique®* ¢ GL(W) with wy(gz,y) = wo(x, gty) for all 2 € W,
andy € Ws. Butthenp = p o hfor h := g x (¢*)~! € O(q) C GL(W). By Proposition 5.5
the algebragV/, A are isomorphic.

(i) = (i) By Proposition 7.1 the algebu /Ny is isomorphic tol” with the productz-y
determined by!?! = ¢ andpl¥! = ¢. Choose, as above, decompositidiis= W’ & W”,
W' = W] & Wy andW"” = W[ @& W4 . Then the cubic fornt ‘essentially lives’ on the
subspacéV{ C W, andW{ & W5 is the annihilator of. In the same way the producty
determined byl = g andpl®l = ¢ on W gives an algebral’ isomorphic to\/A;;. We
choose again decompositiofis = W' & W”, W' = W{ @ W3 andW"” = W{' & W3 and
haveW]" & Wy = Ann(WW). .

Now assume (ii) and fix an algebra isomorphism W — W. Then there exists a linear
isomorphisma. : W — W{ with h(z) = a(z) mod Ann(W) for all x € Wj. Letp :
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Wl — W{’ be an arbitrary linear isomorphism and consider= o &  as an element of
GL(W1). Replacinge by ¢ o g—! we may assume without loss of generality that idyy, .
But thenz-x = z=x and thuss c(z) = wa(z-x,x) = wo(z*x,z) = 6¢(x) forallx € Wyi. O

Suppose thatV; = IF™ with coordinatest = (z1,...,z,,) has dimensionn > 0 in
Proposition 7.1. Thefl’ = IF*™ with coordinatesz, y) = (1, ..., Zm, Y1, .,Ym) and we
may assumey(z,y) = r1y1 + - .. + T, ym. As already mentioned, the linear spacef all
cubic forms oniW; has dimensior(mf). The groupGL(W;) acts onC from the right and
has dimensionn? overIF. The diference of dimensions i€}'). But this number is also the
cardinality of the subsef c IN3, consisting of all tripleg = (j1, j2, j3) With 1 < j; < j; <
js < m. Consider the fine map

(72) OéZIFJ—>C, (tj)'—>C0+thCj,
JjeJ

wherecy := 2% + ...+ 23 andc; := z;,z;,2;, forall j € J. Notice that the nil-polynomial
qg+c =@, (zryr + z}) is a direct sum ofn nil-polynomials, that is, the corresponding
admissible algebra is am-fold smash power of the cyclic algeblat @ IFt? @ IFt3, where
tt=0.

In caselF = IR or IF = C, for a suitable neighbourhodd of 0 € IF”/ the mapo : U —
C intersects allGL(n, IF)-orbits in C transversally. Indeed, since all partial derivativesf
are monomials containing a square, the tangent spageohits GL(n, IF)-orbit is transversal
to the linear subspacg; : j € J)r of C. In particular, in casen > 3 there is a family of
dimension("y) > 1 overIF (= IR or C) of pairwise diferentGL(n, IF)-orbits and thus of
non-equivalent nil-polynomials of degr8en 1. Notice that in caser = 3 the mappingy in
(7.2) reduces to

(7.3) a:F = C, tr 2 +a)+ a3+ trzams.

7.4 Corollary. Let1F be eitherR or C. Then in every dimension > 7 there is an infinite
(in fact uncountable) number of isomorphy classes of adbiésalgebras of dimensiom and
nil-index 3.

Proposition 6.2 together with Proposition 7.1 generalitheorems 3.3 and 4.1 in [3]
from the case of algebraically closed base fields to arlifrelds of characteristic 0, see Propo-
sition 7.5 below. For every admissible algevawith nil-index v the non-degeneracy of. on
N/NY implies dim(N* /N?) < dim(N/N7) forall v/2 < k < vandj = v — k + 1 and
thus H(v — 1) < H(1) for the Hilbert functionH = H . This means in the special case of
nil-index v = 3 that the Hilbert function of\" has the form{1,m,n, 1} with m > n > 1.

7.5 Proposition. (Classification of admissible algebras wh nil-index 3) The admissible
algebras\ of nil-index 3 are, up to isomorphism, precisely the smasidpetsN' v N,
whereN” is a reduced algebra of dimension1 as described in Propositiohl andN"' has
nil-index at most two. I\ has Hilbert function{1, m,n, 1} thenN’ has symmetric Hilbert
function{1,n,n,1} and admits a canonical grading. Furthermore, the Hilberttfan of N'"
is{l,m — n,1} if m > n, and is{1,1} if m = n (that is,dim(N"") = 1, or equivalently,
N = N in this case).

Notice that every admissible algebra with a canonical giadias symmetric Hilbert
function (2.6). The converse is not true, see e.g. the exaofaimension 23 in Section 8.

Moduli algebras of type Eg. With Proposition 5.13 it is possible to compute for a given
nil-polynomial an admissible algebra it is associated tw.tRe nil-polynomials in Proposition
7.1in caselim W = 6 there is a connection to moduli algebras associated to siedlfptic
singularitiesE;, see [2], p. 306: Lefr = C and fort € € with 3 + 27 # 0 consider the
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nilpotent algebraV; = M(X3+ Y3+ Z3 +tXY Z), compare the notation (8.2) below. Then,
with z, y, 2 being the residue classes &t Y, Z a basis fotV; is z, v, 2z, yz, vz, vy, xyz with
Ann(N;) = Czyz and

(7.6) pr = tad +tad + tazg — 18z 1xox3 + 1174 + T2T5 + T3T6

is a nil-polynomial associated t&;. Notice that the cubic part gf; occurs already in (3.1)
of [2]. Notice also thail; = (x,y,z)¢ andW5 = (yz,zz, xy)¢ are two totally isotropic
subspaces as occurring in Proposition 7.1. Although fomibeduli algebras the three param-
eterst with ¢3 + 27 = 0 have to be excluded (for these three values tife singularity of
{X? +Y3+ 722 +tXYZ = 0} is not isolated) p; is a nil-polynomial also for theseand is
associated to an admissible algebra of nil-index 3 as wetlt B 0 ands := —18/t it is easy
to see that the nil-polynomial; in (7.6) is linearly equivalent to

x?{ + x% + xg + sx1X2x3 + T124 + Toxs + X326, COMpare with (7.3)

Nil-polynomials of degree 4

The method in Proposition 7.1 can be generalized to getatjlromials of higher de-
grees, say of degree 4 for simplicity. Throughout the sufm®eave use the notation (2.1).
Because of Propositions 5.5 and 6.5 it is not necessary tinglissh between linear andfiane
equivalence for nil-polynomials of degree 4.

For fixedn, m > 1 letW = W, ®W,@® W5 be a vector space witlv, = IF", W, = IF™
and letqg be a fixed non-degenerate quadratic formlgnin the following. Assume thakl’y,

W3 are totally isotropic and thal’; & W3, W5 are orthogonal with respect tp ThenW has
dimensior2n +m, and without loss of generality we assume that for suitable. . , ¢,,, € IF*

q(y) = ZEkyl(f) if yeWs.
k=1

As before letC be the space of all cubic forms é#. Our aim is to find cubic forms € C,
that are the cubic part of a nil-polynomial of degree 4.

Denote byC’ the space of all cubic formson W, & W, such thatc(z + y) is quadratic
in z € Wy and linear iny € W5, or equivalently, which are of the form

1 m n
C(l’ —|—y) = 5 Z Z CijkTiT Yk forall z e Wl,y e Wy
k=11,5=1

with suitable cofficientsc;;;, = cji, € IF. Extending every € C’ trivially to a cubic form on
W we considerC’ as a subset of .

For fixedc € C’ the symmetric 2- and 3-linear forms,,w; on W are defined by
wo(x,z) = 2q(z) andws(z, z, z) = 6¢(z) for all x € W. With the commutative produat-y
on W, see (5.11), define in addition also thdinear formsw; by (5.15) for allk > 4. Then,
for everyx,y € W; the identityws(z-y,t) = ws(z,y,t) = 0for all t € Wy & W3 implies
x-y € W, thatisW,-W; C Ws. In the same ways(z-y,t) = 0 for all z € Wy, y € W5 and
t € Wy @ WsimpliesW,-Wy C Wi. Also W;-W;, = 0 follows for all j, k£ with j + & > 4.
Thereforec belongs toC, if and only if (a-b)-c is symmetric ina, ¢ € W, for everyb € Wj.

In terms of the standard basis, . . . , e,,, of Wy, = IF"* we have

m

ab= Z ( Z E];lCijkaibj>€k for all CL,b c W1

k=1 i,j=1
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and thus with®, ; . s == S_1° | 1 ' cijrCrsi. We get the identity

wa ((a-b)-c,d) Z O, jrsabjc.ds foral a,b, e de W, implying

%,7,7,8=1

(7.7) A=CnNC={ceC':0,,,, issymmetricini,r}.

Notice that the condition in (7.7) implies th@t ; .. s is symmetric in all indicesA is a rational
subvariety of the linear spac€, it consists of all those for which the corresponding product
z-y on W is associative. The group := GL(W;) x O(qyw,) € GL(W; @ W) acts onC’
by ¢ ++ c oy~ for everyy € I'. Furthermore(g, h) — (g, h, (¢*)~') embeds into O(q),
compare the proof of Proposition 7.1. As a consequence,ulnasety A C C’ is invariant
underT.

We are only interested in the case where A is non-degenerate div; & 5. Then
Wit1 = (Wi-Wi)p holds fork = 1,2, implyingm < ("3'). PutAN == @, , W with
Wy := IF andW}, := 0 for all k > 4. The product (5.12) realize§” as graded admissible
algebra. The non-degeneracy ofjives in additon\V* = ,., W, for all k > 0, that is,
the grading is canonical. Conversely, every canonicalidgd admissible algebra of nil-index
4 occurs (up to isomorphism) this way with a non-degenetads above. Further admissible
algebras with nil-index 4 can be obtained frgvhas above by takingv' v A" with A/ an ar-
bitrary admissible algebra of nil-index 3. But all these algebras are gradable by Proposition
6.4. Since there exist non-gradable admissible algebras-wfdex 4 (see Section 8) the clas-
sification problem in the nil-index 4 case must be more ingdlthan the one in Proposition
7.5.

Let us consider the special case= 2 with m = (”;rl) = 3 in more detail (among these
are in casdl’ = € also all nil-polynomials of maximal ideals of moduli algabrassociated to
singularities of type-r, see [2], p. 307). For simplicity we assume that for suitaolerdinates

(z1,2z2) Of W1, (y1,y2,ys3) of Wy and(zy, z5) of W3 the quadratic forng is given by

(7.8) q =121 + To2z9 + y( ) (2) + Ey(Q) for fixed ¢ e IF*

(in caselF' = IR, C this is not a real restriction). For evety IF consider the cubic form
¢ = (23 () 4 x( ))yl + 212y + txg )yg

on Wi & W, which is non-degeneratef£ 0. A simple computation reveals that evetyis
contained inA = C’ N C,. The corresponding nil-polynomial (depending on the chaite)
then is

(79) pt =q—+ ¢+ dt with dt = .1'54) + l‘gz)léz) (1 + 6_1t2)l’g4) .

For everyt € IF* an invariant ofd; is ¢(t) := 92(d:)%/g5(d,)? = 2t~ (4 + e 11?)? € TF,
whereg,, g3 are the classical invariants of binary quartics, compalre.[27. Since every fiber
of ¢ : IF* — TF contains at most 6 elements we conclude

7.10 Proposition. For every fieldF and every fixed € IF* the set of all equivalence classes
given by all nil-polynomialsp;, t € IF*, has the same cardinality & and, in particular, is
infinite.

Remarks 1. In casell’ = () is the rational field there are infinitely many choicessof Q"
leading to pairwise non-equivalent quadratic forgris (7.8). For each such choice there is an
infinite number of pairwise non-equivalent nil-polynonsia} of degree 4 ovef).
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2. In caselF = 1R is the real field there are essentially the two choices +1. In case
e = 1 the formgq has type(5,2) and all nil-polynomialsp; with 0 < ¢ < +/8 are pairwise
non-equivalent. In case = —1 the formgq has type(4, 3) and all p; with ¢ > 0 are pairwise
non-equivalent.

3. Nil-polynomials of degree> 5 can be constructed just as in the case of degrees 3 and 4 as
before. As an example we briefly touch the case of degree 5a Wector spacél” of finite
dimension oveft' together with a non-degenerate quadratic fgram 1/7. Assume furthermore
that there is a direct sum decompositidn = W, @ Wy & W3 & W, into non-zero totally
isotropic subspaces such tH&t @ W, andW, @ W3 are orthogonal. Then consider a non-
degenerate cubic formon W, & W, @& W3 (trivially extended td”) that can be written as a
sumc = ¢’ 4+ ¢” of cubic forms with the following propertieg’ is a cubic form ori?; ¢ W3
that is linear in the variables d¥5; while ¢ is a cubic form oV, @ W, that is linear in the
variables ofi¥;. Denote byz-y the commutative product o/ determined byy andc. Then
Wy = (Wl'W1>, W3 = <W1W2> andW, = (Wl'Wg + WQ-W2>. If we assumer € Cq, we
get withTs := IF as in the nil-index 4 case above tiidt:= @, ., W} is a canonically graded
admissible algebra of nil-index 5. Conversely, every cécailly graded admissible algebra of
nil-index 5 is obtained this way.

8. Some counterexamples

In this section we give examples of admissible algelrakout Property (AH). By The-
orem 3.2 such an algebra cannot be graded. We also give eesumiphon-gradable algebras
with Property (AH).

A test for non-gradability (especially with computer aidyalving nil-polynomials is
the following

8.1 Proposition. Let N be an admissible algebra with nil-polynomjak [z, ..., x,| and
nil-indexv. Then, ifN has a grading, there exists a matiix= (a;;) € IF"*" such that
(i) ép=pforé:=3""_; ajer 9oy, -
(i) Ais dlagonallzabfe ovéF.
(i) Every eigen-value oA is a positive rational number, and for every eigen-vallaso
1—e is an eigen-value with the same muiltiplicity.
(iv) The eigenvalues form the arithmetic progressigrg, ..., =1 if N has a canonical
grading.
Proof. Let N' = @@ N; be a grading and puf := max{k : N} # 0}. ThenNj is the
annihilator of V. Let W := @, _, N, and choose a linear isomorphigm: IF" — T/ such
thaty(e;) € N, for all j and suitablé: = k(j), whereey, .. ., e, is the standard basis @f".
Further letw be a pointing on\V" with kernel W and putp := w o exp, o . Then (i) - (iii)
hold for p and the diagonal matriX with diagonal entrie;; = k(j)/d for all j. In case the
grading is canonicalj = v and N}, # 0 for 0 < k < v holds, implying (iv).

By Proposition 5.5 the nil-polynomials, p are linearly equivalent. As a consequence of
Proposition 5.4 there exists € GL(n,IF) andc € IF* with ¢ p(z) = p(Cx) for all z € TF".
But thenp satisfies (i) - (iv) with respect td = CAC 1. O

The proof of 8.1 uses the non-trivial fact that every gradabl has property (AH) and
hence that any two associated nil-polynomials are lineaglyivalent, compare 3.2 and 4.10.
Property (i) means that = \10p/y,, + ... + X\, 9P/, for suitable linear forms\; on
IF", and hence thap is in its Jacobi ideal (the ideal im“fml, ..., xy] generated by all first
partial derivatives op). Part of 8.1 can also be reformulated in terms of quasi-lgeneous
polynomials. By definition,f € IF[xy,...,z,] is quasi-homogeneolsthere exist positive
integersm, my, ..., m, with f(t"*zq,..., t"z,) =t f(zy,...,z,) forall t € IF.

Remark. Let N be an admissible algebra having a grading. Then there exgiasi-homoge-
neous nil-polynomial associated with.
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Motivated by the main result of [11], see also [12], we organbur search for non-
gradable admissible algebras as follows: For fixed indetedesT], ..., T, denote bym
the maximal ideal in the localizatioR of IF[7; ..., T,,] at the origin, that is, the ideal of all
quotientsP/Q with P, Q € TF[T} ..., T,,] satisfyingQ(0) # P(0) = 0. For everyF € m? let
J(F)in R be theJacobi ideadf I’ (the ideal generated by all first order derivativeg9f Then
if J(F') > m* for somek, the Milnor algebraRk/.J(F) has finite dimension and its maximal
ideal

(8.2) M(F) :=m /J(F)

is nilpotent. For our search we are looking for examples iti J(F').

Let us stress that we always use the notatidF') in the following way: The indetermi-
natesiy, ..., T,, giving the localizationR above are precisely those occurringfinAs an ex-
ample, for theM (F") occurring two lines below we understand= 2 and{T;, 7>} = {X, Y }.

Non-gradable algebras with Property (AH)
Let N := M(X5 + X2Y?2 4+ Y*). Then\ has basis

(8.3) A A TRV TR T
wherez, y are the residue classes.®f Y. We abbreviate this basis with, . . . , eg. The annihi-
lator NV};) is spanned byg = x® and the residue class #fis —eg/4 € N - Anil-polynomial
p € IF[z1,...,xg] obtained from the basis'is

57t + (33w + Sl — Satal)
(8.4) + (32325 + 2123 + 2xde; — 2ataw; — Swywowg — 2wyad)

+ (@124 4+ 2ow3 + w28 + %m% — Sxom, — 2a3) .
In particular,\ is an admissible algebra of dimension 9 and nil-index 5. Aléaloes not have
a gradation but has Property (AH)

Further examples of this type (but of higher dimension) drtaioed by varyingF'. For
instanceN := M(F) with F = X* + X?Y3 + Y? is an admissible algebra of dimension
11 and nil-index 5 without a grading but with Property (AH)s Algebra\ is isomorphic to
the (unique) maximal ideal df (X, Y]/I, wherel := (OF [5x, OF /5y, X3Y). The latter
algebra already appears as an example of a non-gradableraligeRemark 3.3 in [1] (note
that X° occurring there is already contained/imand hence is superfluous).

If we go to algebras with embedding dimension 3 we can get ampie with nil-index 4
and dimension 8. Add an additional indetermin&tand consideM (X4 + XY 24+ Y34+ X Z2).
Then a basis is given by, y, z, 22, 23, yz, 22, 2* and

1.4 (1 4 2

— 2 2 2, 4,3
p =5771 + (52174 + 30719 — 22,75 + 525 — 3T973)

1,..2 8 8

is the nil-polynomial derived from it. The Hilbert functias{1, 3, 3, 1, 1}. Also for this algebra
there is no matrixd € IF"*7 satisfying (i) in Proposition 8.1. On the other hand, fotabie co-
efficients\, € IF[z1,.. ., z7] there existsa representatiop = ;9P /5, +...+ 0P/, ,
that is,p lies in its Jacobi ideal.

1 Computed witt8ingular, freely available ahttp://www.singular.uni-kl.de/

2 Computed witiMaple.
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Failing Property (AH)

In this subsection we restrict to the special cise= {IR, C}. This allows us to use
analytic arguments.

It can be seehthat M (X% + X2Y3 + Y®) is an admissible algebra of dimension 17
and nil-index 7. In the same wayt(X7 + X2Y3 + X3Y? + Y*) is an admissible algebra of
dimension 15 and nil-index 8. Als&1 (X5 + X?Y? + Y4 + X Z?) for fixed indeterminates
X,Y, Z is an admissible algebra of dimension 15 with nil-index d.tAtee algebras do not
have Property (AH). The automorphism groups have dimer&io?0, 23 respectively. Instead
of giving further details for these examples we do this fasther one (of even lower nil-index
but higher dimension).

For indeterminates(, Y, Z, U consider\ := M(X? + X2Y2 + Y4 4+ X 72 + ZU?).
ThenV is an admissible algebra of dimension 23 and nil-index 5aat,f\" has symmetric
Hilbert function{1,4,7,7,4,1}. A basis for\ ist

T, Y, 2, U, LY, y27 xy27 Yz, y227 2'27 y227 y22'27 U, Yu, TYU, y2u7 JT?JQM U27 $U27 yu2, a:yu2, y2u2, JT?JQUQ

with the last vector spanningnn(\). Also, the nil-polynomial given by the above basis is
(8.5

~—

(1. .2 1.2 1.2 1,.3)..2
p= (4$1$4 §T1%3 T 9gTa%3 t 8$3)$2
1.3, 1.2 _ 1.2 1,22 1 2 _ 1 1 3
+ (18‘”1‘”3 ITIToTg — U LTy — §LITY + 3T X5T g — T ToTglg + FLGTZ + T Toly Ty
1 2. 1.3 1.2 3.2 1.2 1 2. 3. .2
T QT TTY + g ToTg + §AGLgTg + JAGT3T g + gTGTYTyg + FToT5Ty + 4“72“73“78)

2 1
1718 — 2T T5Tg + T Tl g —

2
2T Tplg = L TYT 3 + T TyTeg

Wi +
=R

2 2 1 3 3
T 3Ty + §TGTg T gTGT g T ToTgW g + LTy T 9ToTgTy ) + ToTgl g + TyTy Ty

+ 5T 23y — JORTy +TgTyTyy + §TGT + FTTT ) F TT Ty + 5T,TF + FEFTy + %“73“7%)
+ (931‘”22 - %9515”19 T EyToy ¥ X5 + %$6$9 T ZgTyg T Tylyg t %%‘”12
+ %xsxll + %“79“710 F @@y, — 3Ty 3T 6 x14$15) :
We claim that the grapl§’ of p in IF?® cannot be flinely homogeneous. Defirfeon IF?* by
f(x1,...,293) := p(x1,...,T202) — xa3. SinceAff(S) is a Lie group ovelF, affine homo-
geneity ofS would imply for every fixedl < ¢ < 22 the existence of anfiane vector field

23
§= 8/C%Cg + Z ajkxka/axj

7,k=1

with codficientsa;, € IF such that{f = pf for somep < IF. Since the polynomiaf has
rational codicients the vector field can be chosen in such a way thatagll andp are rational.
But {f = pf is equivalent to a system of linear equations:in, p. It can be seenthat this
system has a rational solution only in caset 3. Therefore the orbit of € S under the
group Aff(.S) has dimension 21. In particula$, is not even locally fiinely homogeneous at
the origin. Furthermorg the groupAff(S) = Aut(N) is a Lie group of dimensiod2 overlF.

Remark. Since computer software may contain errors we carried dutoahputations in a
highly redundant manner: Berent machines were used, the same computations weregépeat
with different routines, bases of the admissible algefdfasnder consideration were changed
resulting in totally diferent (but &inely equivalent) nil-polynomials and finally, the lineassy
teméf = pf with £ from above was replaced by a totallyfférent one (namely Lemma 8.6
for the special case = 22 andn = 23). Notice that{f —pf € IF[zq, ..., z22] IS a polynomial

of degree 5 having;, andp as parameters. An alternative condition fobeing tangent to

S C N clearly is thattf vanishes at every point ¢f. This leads to a linear system in terms of
a polynomial of degree bigger than 5. This works also forteabj codimension:

For fixed integers, s > 1 andn := r+s considedF", IF* with coordinategz, . .., z,),
(Typg1,-..,2,) respectively. Lep : IF" — IF* be a polynomial map. Them= (p,+1,.-.,pn)
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for scalar valued polynomials, onIF". Denote byS the graph ofp in IF", which is a smooth
variety of codimension. The proof of the following statement is an easy exerciséfiieikn-
tiation and will be omitted.

8.6 Lemma. LetIF be eithedR or C. ThenS C IF" is locally atinely homogeneous at the
origin if and only if for everyl < ¢ < r the following linear system in the unknowns,,
1 < 4,k < n, has a solution ovdF

1) P, = Z(’Dj + 0 )8pm/axj for m=r+1,...,n, where

Jj=1

T n
P; = Zajkl'k + Z a;xp, for 1<j<n
k=1 k=r+1

ands is the Kronecker delta.

The equations in Lemma 8.6 can also be used to compute thelgabraaff(.S) of
Aff(S) numerically. Indeed, add to thg, further unknowns:, ..., ¢, and replace ir{t) the
termd;, by c;. Then the solution space for this altered linear systemnsigally isomorphic

to aff (.5).
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