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Abstract. We give a survey on the main result of [9] where all homogeneous
Levi degenerate CR-manifolds in dimension 5 have been classified up to local
CR-~equivalence. Furthermore, we discuss the only so far known examples of 3-
and 4-nondegenerate locally homogeneous hypersurfaces by explicit equations
and in greater detail than in [9].

1. Introduction and Preliminaries

At the beginning of every course on Complex Analysis the Cauchy-
Riemann differential equations appear: For every domain U C C and
every smooth function f = u +iv : U — C complex differentiability
holds if and only if at every point of U the real Jacobian d(u,v)/9(x,y)
in IR?*? is of the form (fbg), or equivalently, induces a complex linear
endomorphism of € ~ IR?. More generally, for every domain U ¢ C" a
smooth mapping f : U — C™ is holomorphic (i.e. locally representable
by a convergent power series) if and only if at every a € U the real
Jacobian in IR?™*?" induces a complex linear operator from C" ~ IR*"
to €™ ~ IR*™.

Now consider instead of open subsets in €™ arbitrary connected
smooth real submanifolds M C C". At every a € M then the tangent
space to M is an IR-linear subspace T,M C C" and for every smooth
f: M — C™ the differential at a is an IR-linear map df, : T,M — C™. It
is obvious that a necessary condition for f being locally the restriction of
a holomorphic €™ -valued map, defined in an open neighbourhood of a €
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M with respect to C", is that the restriction of df, to the holomorphic
tangent space

(1.1) H, M =T, M NiT,M

(that is the largest complex linear subspace of C™ contained in the real
tangent space T,M) is complex linear. M is called a CR-submanifold
of €™ if the complex dimension of H,M does not depend on a € M.
This dimension is called the CR-dimension, while the real dimension of
T,M/H,M is called the CR-codimension of M. Then the collection of
all H,M gives the holomorphic subbundle HM of the tangent bundle
T M, and multiplication with the imaginary unit ¢ defines a bundle en-
domorphism J of HM with J? = —id. The smooth sections in T'M,
the smooth vector fields on M, form a real Lie algebra and M satisfies
the integrability condition, that is, for all smooth sections &,7 in the
subbundle HM also [J&,n] + [€, Jn] is a section in HM and

The abstract version of a Cauchy-Riemann manifold that we intend
to use here is as follows: A smooth CR-manifold is a triple (M, HM, J),
where M is a connected smooth manifold, H M is a smooth subbundle of
the tangent bundle T'M and J is a smooth bundle endomorphism of H M
such that J? = —id and the integrability condition (1.2) holds. J defines
a complex vector space structure on every holomorphic tangent space
H,M. Instead of (M, HM,J) we simply write M if the corresponding
HM and J are clear. The smooth CR-manifolds form a category in a
natural way: A smooth mapping ¢ : M — M’ between CR-manifolds
is a CR-mapping, if for every a € M and o' := p(a) the differential
dpg : T,M — Ty, M’ maps the corresponding holomorphic tangent space
H,M complex linearly to H, M'.

An important local invariant at every a of a smooth CR-manifold
M is the (vector-valued) Levi from. We do not need here the full Levi
form, only its kernel K,M C H,M. In case M = {z € U : p(z) = 0}
for a domain U € €™ and a smooth submersion p : U — IR? one way of
defining the kernel is

K, M = {UGHM Zuwka2p() —0 e
]klj 02;0Z,

for all w € HaM} ,

which does not depend on the choice of the submersion p. In [3], compare
also [16], a complete set of invariants has been given in the real-analytic
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setting that characterizes M near a up to CR-isomorphy provided that
M is Levi nondegenerate at a (that is KM = 0) and in addition is of
hypersurface type (that is, M has CR~codimension 1).

For certain CR-manifolds M we define by induction on k& € IN
higher order Levi kernels K¥M C H,M and say that M has constant
degeneracy of order k if the K¥M, a € M, form a subbundle K*M of
HM: To start the induction just put

KM :=H,M and K;'M :=T,M ®C/N,

with N, :={z®1—-Jzx®i:ax € H,M}. Since N, is a complex linear
subspace, K; ' M inherits a complex structure that we also denote by J.
Embedding T, M into K, 'M via z — 2 ® 1mod N,, the space K; M
may be thought of as the ‘smallest’ complex linear space containing T, M
as real and H,M as complex linear subspace.

Now suppose as induction step that M has constant degeneracy of order
k > 0 and that K*M C K¥~'M is already defined as complex linear
subspace. Then it can be shown [13] that there is a unique mapping

LAY g M x KFM — KFM/KEM
satisfying
£§+1(£a777a) = [5,77]&+J[§, JT/]a mod KCILCM

for all smooth sections ¢ and 1 in HM and K*M respectively, and the
next kernel is defined by

KEHIM = {v € KEM : L5 (H, M, v) = 0}

LF+1 is conjugate linear in the second and, as a consequence of the
integrability condition (1.1), complex linear in the first variable. In
particular, K**1M is a complex linear subspace of K*M. Also, L] is
(up to a non-zero constant factor) the usual Levi form at ¢ € M and
KM =K,M.

We say that the CR-manifold M has constant degeneracy if it
has constant degeneracy of any order in the above sense. For instance,
M has this property, if for every pair of points a,a’ € M there exist
open neighbourhoods U, U’ of a,a’ together with a CR-diffeomorphism
¢ : U — U’ satisfying ¢(a) = @’. In this note we are mainly interested
in manifolds of this type.

A CR-manifold M of constant degeneracy is called finitely non-
degenerate if K*M = 0 for some k and is called k-nondegenerate if
k > 1 is minimal with respect to this property (for the definition of
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k-nondegeneracy without the assumption of ‘constant degeneracy’ com-
pare e.g. [1]). In case M is finitely non-degenerate there cannot exist
a domain N C M that is CR-isomorphic to a direct product N’ x C
with a CR-manifold N’. It is clear that Levi nondegenerate is the same
as 1-nondegenerate. In case k > 2 the minimal dimension for an every-
where k-nondegenerate CR-manifold is 2k + 1. A well studied example
of a homogeneous 2-nondegenerate CR-manifold in the minimal possible
dimension 5 is the tube

(1.3) M:={zeC®: (Rez)?+ (Re2)? = (Re 23)%, (Re z3) > 0}

over the future light cone in 3-dimensional space time, compare [7], [9],
[10], that will play a prominent role below.

The CR-manifold M is called minimal if every smooth submanifold
N C M with H,M C T,N for all a € N is open in M. In case M is
minimal in this sense there cannot exist a domain N C M that is CR-
isomorphic to a direct product N’ x IR with a CR-submanifold N’.

2. The analytic category

From now on we will only consider real-analytic CR-manifolds
(M, HM,J), that is, M is a real-analytic manifold, HM C TM is a real-
analytic subbundle and also J is real-analytic. Also these CR-manifolds
form a category with respect to real-analytic CR-mappings. In particu-
lar, we now call two such manifolds M and M’ CR-equivalent if there
exists a CR-diffeomorphism M — M’ that is real-analytic in both di-
rections. It is well known that every (real-analytic) CR-manifold M can
be realized locally as a real-analytic CR-submanifold of some C".

By Aut(M) we denote the group of all (real-analytic) CR-automor-
phisms of M. In case Aut(M) acts transitively on M the CR-manifold M
is called homogeneous. Vector fields on M are just the sections £ in T M
over M — for every a € M we write £, instead of £(a) € T,M. A real-
analytic vector field on M is called an infinitesimal CR-transformation if
the corresponding local flow consists of local CR~isomorphisms. Denote
by hol (M) the space of all infinitesimal CR-transformations on M, which
is a real Lie algebra with respect to the usual bracket. It is known,
compare e.g. [1], that a vector field £ on M is contained in hol (M) if
and only if every point of M has an open neighbourhood N that can
be realized as a real-analytic submanifold of a domain U in some C" in
such a way that &|y extends to a holomorphic vector field on U.

Our interest in the following is mainly in the local CR-structure
at arbitrary points a € M, that is, in the CR-manifold germs (M, a).
Denote by hol(M,a) the space of all germs of vector fields in hol(N),
where N C M runs through all open neighbourhoods of a in M. Clearly,
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also hol(M,a) is a real Lie algebra in an obvious way and there is a
canonical embedding hol (M) < hol(M,a). In certain cases more can be
said:

2.1 Proposition. Suppose that the CR-manifold M is simply con-
nected and that all Lie algebras hol(M,a), a € M, have the same finite
dimension. Then for every a € M the canonical injection hol(M) —
hol(M,a) is an isomorphism of Lie algebras.

Proof. Denote by 7 : §§ — M the sheaf whose stalks 77 !(a) are the
Lie algebras hol(M,a). For every domain N C M then hol(N) can be
identified with the space of continuous sections over N in . Every a €
M has an open neighbourhood N in M such that hol(N) — hol(M,c)
is an isomorphism for every ¢ € N. This implies that the connected
components of §) are coverings of M and hence are single sheeted since
M is simply connected. O

The CR-manifold M is called locally homogeneous if for every
a,a’ € M there exist open neighbourhoods N, N’ in M together with
a CR-isomorphism N — N’ sending a to a'. By [17] this is equiva-
lent to the condition: To every a € M there exists a Lie subalgebra
g C hol(M,a) of finite dimension such that the canonical evaluation
map g — T, M, £ — &,, is surjective. Every locally homogeneous CR-
manifold M has constant degeneracy in the sense of the preceding sec-
tion. In particular, all complex subbundles K*M < TM, k € IN, are
defined.

It is known that for every locally homogeneous CR-manifold M
the condition dimhol(M,a) < oo for some a € M (and hence for all
a € M) is equivalent to M being finitely nondegenerate and minimal (as
defined in the preceding section).

For homogeneous Levi nondegenerate manifolds large classes of
examples are known: One of the best studied examples is for every n > 2
the euclidian hypersphere

(2.2) Si={z€C": (z2) =) _ =z =1},

the boundary of the euclidian ball B := {z € C" : (z]|z) < 1}. Every
g € Aut(S) extends to a biholomorphic automorphism of the ball B
and thus gives a group isomorphism Aut(S) = Aut(B) = PSU(n,1). In
particular, S is homogeneous (clearly, the subgroup SU(n) C GL(n,C)
is already transitive on S). For every a € S the holomorphic tangent
space H,S = a' is the (complex) orthogonal complement of the vector
a. In particular, a — H,S, defines an ‘anti-CR map’ from S to the
Grassmannian of all complex hyperplanes in C".

Further classes of examples can be found, for instance, in [12].
One of these is as follows: Fix arbitrary integers p > ¢ > 1 and let
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E := CP*9 be the space of all complex p x g-matrices. Then the compact
group K := SU(p) x SU(q) acts on E by z — uzv*, (u,v) € K. For
every a € E the orbit M := K(a) is a Levi nondegenerate minimal
homogeneous CR-submanifold of E. In case M’ = K'(a’) for a’ € P e
and K’ := SU(p’) x SU(¢') with p’ > ¢’ > 1 is another orbit of this type,
the manifolds M and M’ are locally CR-equivalent if and only if p’ = p,
¢’ = q and one of the following alternatives holds.

(1) a invertible and hence p = q: M’ = tM or M’ = tM~! for some
teC*and M1 :={z7t:2¢€ M} CGL(p,C).

(2) a not invertible: M’ = tM for some t > 0.

3. Tube manifolds

In the following let ' be a complex vector space of finite dimension.
Fix a conjugation z — Z on E and denote by V := {z € E: z = Z} the
corresponding real form. Then E = V @ iV and for every (connected
immersed) real-analytic submanifold F' C V the corresponding tube
M := F + iV is a CR-submanifold of F. Indeed, the abelian group
A of all translations z +— z +iv, v € V, satisfies M = A(F) and for
every a € F' C M we have H,M =T, F & T, F. More generally, since
the conjugation leaves M invariant, all kernels K¥M (if defined) are
also invariant under the conjugation and hence are of the form K*M =
KFF @ iKEF for KFF .= KFM N T, F.

For a certain class of tube manifolds M = F' + ¢V a simple method
for the actual computation of the kernels K*F has been given in [10]:
Let 2 be a linear space of affine mappings £ : V' — V such that

(i) & :=&(x) €T, F forall { € A and all x € F,
(ii) the mapping A — T, F, £ — &,, is a linear isomorphism.

Then the CR-submanifold M = F' + ¢V is locally homogeneous and the
kernels K*F are recursively given by

K'F =T,F and
KMIF ={ve K'F:"™(v) € KFF forall ¢ €A},

where £ = ¢ — & is the linear part of &.

Tubes form a very special class of CR-manifolds: Indeed, for every
tube M and every a € M the Lie algebra hol(M,a) must contain an
abelian subalgebra of dimension
() n := CR-dimM 4 CR-codimM.

As an example consider for fixed p > ¢ > 1 and a € E := C?*? nonin-
vertible the submanifold M := {uav : u € SU(p),v € SU(q)} of E, that
is, the case (2) at the end of Section 2. Then M is homogeneous, Levi
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nondegenerate, minimal and n = r(p+q—r) for the number n defined by
the formula (%), where r is the rank of the matrix a (compare [12] for de-
tails). Furthermore, M is of hypersurface type if and only if r = 1. In M
there exists a unique (rectangular) diagonal matrix d with non-negative
real diagonal entries di; > dag > -+ > dgq. In case ¢ > 1 and dq1 # dyq
the Lie algebra hol(M,a) is isomorphic to u(p) x su(q) and hence does
not contain any abelian Lie subalgebra of dimension p + ¢. Therefore,
in this case the germ (M, a) has no local tube realization. On the other
hand, it can be shown that (M, a) always has a tube realization if r = 1.
Notice that among these cases the sphere S from (2.2) occurs for p = n,
q =1, di;1 =1 and that S is locally CR-equivalent, for instance, to the
tube with base
F:= {xEIR":ZeQm’C =1}.

Indeed, the locally biholomorphic map z +— (e*1,e*2,...,e*n) realizes
F +4IR™ as universal cover of SN (C*)".

In [4] all closed tube hypersurfaces in C" have been classified up
to affine equivalence that are locally CR~equivalent to the sphere (2.2).
In [11] the same has been done for the pseudo-sphere

{Z cC": szfk =1 +Zn§n}
k<n

of signature (n — 1,1). In both cases there is only a finite number of
equivalence classes. These were obtained by solving a certain system of
second order differential equations coming from [3]. In particular, this
method does not extend to the Levi degenerate case nor to higher CR-
codimensions.

4. Examples of 2- 3- 4-nondegenerate manifolds

In the following we discuss some of the examples presented in sec-
tion 5 of [10]: For fixed integers k € {2,3,4} and ¢ > 1 let V C R[u, v]
be the subspace of all homogeneous polynomials of degree m := k+c—1.
We consider every p € V as polynomial function on IR? and also on €2
if convenient. By G C GL(V') we denote the subgroup of all transforma-
tions p — +pog with g € GL(2,IR). Then G acts irreducibly on V and,
as a consequence, for every non-zero G-orbit F' in V' the corresponding
tube manifold M = F + iV is a minimal (not necessarily connected)
CR-submanifold of F := V @ iV. Note that G always has two connected
components and is isomorphic to GL(2,IR) if m is odd. The connected
identity component G° of G consists of all transformations p +— t-(po g)
with t > 0 and g € SL(2,R).

By definition, the function p = p(u,v) € V vanishes of order > d €
IN at (ug : vo) € IP1(C) if all partial derivatives up to degree d— 1 vanish

7



at (ug,v9) € C2. Counted with multiplicities, every p # 0 has exactly
m zeroes. The group GL(2,IR) acts by linear fractional transformations
on IP;(C) with two orbits, IP;(IR) and its complement. For every g €
GL(2,IR) the zeroes of p and + p o g differ by an application of g on
P, (C).

Now consider the set P of all p # 0 in V with the following prop-
erty: All zeroes of p are in IP;(IR), one of these has order m — (k — 2)
while the remaining (k — 2) zeroes have order 1. From the above it is
clear that P for our particular choices of k is a G-orbit. Denote by F
the connected component of P that contains the polynomial

v k=2
m—1

pi= < uv k=3
(u? —v?) ™2 k=4.

Then the connected identity component G° of G acts transitively on F.
With the criterion in Section 3 it is easily seen that

k—1—r
KI’;F: Z Ru/v™™7 forall »>0.

Jj=0

In particular, the tube manifold M := F + iV is a k-nondegenerate
homogeneous CR-submanifold of £ = V @4V with CR-dimension k and
CR-codimension c. For better distinction we also write F*¢ := F and
M*¢ .= M in the following.

The CR-manifolds M*¢ from Section 5 in [10] coincide with our
MP" < for k = 2,3. The 4-nondegenerate homogeneous CR-submanifold
M*¢ is the tube over the G%-orbit F4¢ defined as follows: It is a con-
nected component of the set Q of all ¢ # 0 in V having a zero of order
(m—2) in IP1(IR) and 2 zeros outside IP1(IR). A polynomial in @ is, for
instance, (u? 4 v?)v™ 2.

Let us identify R™™* and V via

(4.1) (L0, T1,y .oy Ty) = Z:Uj<m>ujvm_j.
~ J

j=0

Then F2¢, 3¢ F4c F4e are respectively the GC-orbits of the points
(1,0,...,0), (0,1,0,...,0), (-1,0,1,0,...,0), (1,0,1,0,...,0).
Notice that F%¢U —F%¢ is the unique G-orbit that is closed in V'\ {0}.
It is also the unique 2-dimensional G-orbit in V' and consists of all p € V
that are a power of a non-zero linear form on V. The F?¢ will occur

again in Section 5.



Denote for every z = (z,.. a:mf} ) the resultant of the
two polynomials m -10f /8u and m~ /(%, Where f € V corresponds
to x by (4.1). Then D is a homogeneous polynomial of degree 2m — 2
in x and D(z) = 0 if and only if the corresponding polynomial f has a
multiple zero in IP1(C). In particular, every F of the form F*¢ or F*¢
is contained in the hypersurface S := {z € R™"" : D(z) = 0}. In case
¢ =1 the orbit F'is open in the nonsingular part of S and we have the
following explicit formula for D :

Case k = 2: Here D(z) = zox2 — 3. As a consequence,

F21 = {(zg,21,29) €IR?: D(x) = 0 < 29 + 22}
and thus M?! coincides with the future light cone tube M in (1.3) up
to a complex linear isomorphism.
Case k = 3: Here D(z) = 323 — 32323 — 6xom1 22073 + 42303+ 42075 (the
formula presented in Example 1.22 of [15] is not correct). Furthermore,

D(z) = 0 if and only if the orbit G(x) has dimension < 4, see [10].
Therefore F3' consists of all z € IR* for which the matrix

0 I 2562 3%3
3.%'1 21’2 I3 0

0 o 2%1 31’2
3.%'0 21’1 i) 0

has rank 3. In particular, F*! is the nonsingular part of S.
Case k = 4: Here, compare [15] p. 29, D(z) = go(z)® — 27g3(x)? with

go(x) : = xowy — 42123 + 325 and

R 2 2 3
93(T) 1 = ToTamy — ToxE — TIT4 + 2T1T2X3 — T .

The polynomials g2, g3 are invariant under the action of the group
SL(2,R) on V = IR® but not under G°. This allows to describe the orbit
structure of GV from the CR-viewpoint in more detail: For 0 < j < 4 let
SU] be the union of all G°-orbits in S of dimension j, that is, the set of
all x € S for which the matrix

0 1 219 3x3 4dxy
4371 3.%'2 21’3 Xq 0

0 Zo 21’1 333‘2 4:1)3
4330 35131 2%2 I3 0

has rank j (for every x ¢ S the orbit G°(x) has dimension 4). A further
decomposition of S is given by the three G%-invariant subsets

ti={reS:+g3(z) >0}, S%:={xeS:g3(z)=0}



satisfying S~ = —S*. In a total, S consists of 13 G%-orbits, more pre-
cisely:

(i) St\SB = st sl = p4ly st
(i) ST nst = G°0,0,1,0,0) U —G°(1,0,2,0,1)
(iii) S°nSH = 89N S =
(iv) SOn Skl = p32y 32
(v) S0n sk = p23y—F23

with 2-nondegenerate orbits in (ii). The nonsingular part of S is

+H(FH U FY U -G0(1,0,2,0,1))

and FA1NFLT = G(0,0,1,0,0) U F23 U {0}.

The case k = 3, ¢ = 1 gives some affinely homogeneous tube
domains in C*: As before, (g, 1, T2, T3) = Tov*+3zuv*+3T20u V42505
identifies IR* and V. The subgroup G € GL(V) = GL(4,R) is isomorphic
to GL(2,IR) and has precisely two open orbits in R* = V, namely

QF .= {z € R*: +D(z) > 0}.

As subset of V' then 27 consists of all polynomials p # 0 having three dis-
tinct zeroes in IP; (IR) while Q7 consists of all p # 0 with two zeroes out-
side IP; (IR). This shows that every QF is connected and D* := Q* + iIR*
is an affinely homogeneous tube domain in C*. From QF = —QF we
see that the convex hull of QF contains the origin and hence coincides
with IR*. This implies that every holomorphic function on D* has a
holomorphic extension to C*. In particular, every bounded holomorphic
function on DF is constant. Since D(z) is invariant under the action of
SL(2,R) on V = IR* the SL(2,IR)-orbits in QF are the hypersurfaces
S .= {z e R*: D(z) = a} with a € IRY. With the criterion in Section
3 it is easily seen that all S, a # 0, are Levi nondegenerate.

So far we do not have any example of a locally homogeneous CR-
manifold that is k-nondegenerate with k& > 5.

5. Conical manifolds of CR-dimension 2

In this section we discuss linear homogeneous cones F' of dimension
2 in a real vector space V of dimension n > 3. For every such F' the
corresponding tube M := F' 44V is a Levi degenerate homogeneous CR-
submanifold of F :=V @&V with CR-dimension 2 and CR-codimension
(n—2). In case F is contained in a hyperplane W C V' the manifold M is
CR-equivalent to the direct product (F' +iW') x IR. We therefore always
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assume in the following that F' is not contained in any hyperplane of V.
Then M is automatically minimal and 2-nondegenerate as CR-manifold,
compare [10]. In particular, the Lie algebra hol(M,a) then has finite
dimension for every a € M.

In [10] all M of the above type have been classified up to local
CR-equivalence and all hol(M,a) have been explicitly determined. For
a description we recall some elementary facts: a € V is called a cyclic
vector of the endomorphism ¢ € End(V) if the powers ¢*(a), k € IN,
span the vector space V. By Cyc(V) C End(V') we denote the subset of all
cyclic endomorphisms, that is, of all ¢ having a cyclic vector. Every cyclic
 is uniquely determined up to conjugation in Cyc(V') by the (unordered)

sequence a7, . . ., o, of all its characteristic roots in C (more precisely the
roots of the characteristic polynomial of ¢ with mulitplicities counted).
We say that aq, ..., a, form an arithmetic progression if, after a suitable

permutation, the differences (ax4+1 — ax), 1 < k < n, do not depend on
k. In case ¢ has trace 0 this is equivalent to ¢ € p(s((2,IR)) where
p:sl(2,IR) — End(V) is the (essentially) unique irreducible Lie algebra
representation.

To every ¢ € Cyc(V) we associate a linearly homogeneous surface
F = F? in V as follows: For the abelian Lie subalgebra f := h?¥ :=
Rid®R¢ C End(V) consider the subgroup H := exp(h) C GL(V).
Then a € V is cyclic for ¢ if and only if the orbit H(a) is not contained
in a hyperplane of V' and any two cyclic orbits H(a), H(a") differ by
some g € GL(V). Therefore, if we fix a cyclic vector a € V and put
F¥ := H(a), the CR-structure on the tube M¥ := F¥ 4 iV does not
depend on the choice of the cyclic vector a € V. Also, this structure only
depends on the characteristic roots of ¢ counted with multiplicities.

The case where a1, ..., q, form an arithmetic progression: Then there
exists a faithful irreducible representation p : gl(2,IR) — End(V) with
v € p(gl(2,IR)) such that every ¢ € p(gl(2,IR)), considered as vector
field on V, is tangent to F'¥ C V. This means that F'¥ is locally linearly
equivalent to F2™~2 as considered in Section 4. It can be shown that
for every a € M¥

o o ) 50(2,3) n=3

hol(M?,a) = {g[(2,]R) X,V otherwise.

The case where ay, ..., a, do not form an arithmetic progression:
Without loss of generality we may always assume for M¥ that the cyclic
endomorphism ¢ is tracefree, that is aq + ...+ a,, = 0. Then, if ¢’ is

another tracefree cyclic endomorphism with eigenvalues o, ..., o/, the
following conditions are equivalent: (compare Prop. 7.6 in [10])

(i) M? and M¥¢" are locally (globally) CR-equivalent.
(ii) F¥ and F? are locally (globally) linearly equivalent.
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(iii) Modulo a suitable permutation of the indices in one of the eigen-
value strings, o}, = tay holds for some ¢t € IR" and all 1 < k < n.

(iv) hol(M¥#) and hol(M¥#") are isomorphic as Lie algebras.
Furthermore, hol (M?,a) = hol (M?) =2 h¥ x V holds for all a € M*®.
Notice that conversely every linearly homogeneous connected cone

F C V not contained in a hyperplane of V' is locally linearly equivalent
to some M¥ with ¢ € Cyc(V) tracefree.

6. A nonconical manifold of CR-dimension 2

As in Section 4 let V' C IR[u, v] be the subspace of all homogeneous
polynomials of degree m > 3 and denote by I' C GL(2,1R) the subgroup
of all transformations (u,v) — (ru,tu + v) with ¢ € IR and r > 0. Then
" acts on V by p+— pog~! and leaves the affine hyperplane

W:=v™+ ZIRvkvm_k
k=1

invariant. Setting (z1, 2, ..., 2Tm) = V™ +Y 1o Tk (?)vkvm*k identifies
R™ with W and T becomes a group X of affine transformations on IR™.
The orbit

C:=%(0)={(t,t?,...,t"™) € R™ : t € R}

is the twisted m-ic. Its development S := (J . (c + TcC) is divided by
C' into the two linearly equivalent orbits ¥(+a), where a := (1,0,...,0).
Then with v(t) := (¢,t2,...,t™)

F:=3%(a)={y{t)+r(t): teR, r >0}

is an affinely homogeneous surface in IR™ (compare [6], p.45 for the
special case m = 3). The corresponding tube M := F +{IR™ is a homo-
geneous minimal 2-nondegenerate CR-manifold of CR-dimension 2 not
locally CR-equivalent to any of the examples in the previous section. For
every a € M the Lie algebra hol(M,a) has dimension m + 2.

7. The classification in dimension 5

Our examples so far give the following affinely homogeneous 2-
nondegenerate tube manifolds M := F + iIR* ¢ €* of dimension 5,
where r,t run over all real numbers with » > 0 :

(i) F = {r(cost,sint,1) € IR*} the future light cone,
(ii) F = {7 (cost,sint,e!) € R*} with w > 0 arbitrary,
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{r(1,t,et) € R},

{r(1,et, e%) € R} with 6 > 2 arbitrary,

{~(t) + r/(t) € R®}, where y(t) := (t,t2,t3) parameterizes
the twisted cubic and /(¢) = (1, 2t, 3t?).

In case (i) M = M, see (1.3), and hol(M) = hol(M,a) = s0(2,3) is

semisimple with dimension 10 for all a € M. In all other cases M is

simply connected and hol(M) = hol(M,a) is a solvable Lie algebra of
dimension 5.

F
(iv) F
(v) F

In [6], compare also [5], all affinely homogenecous surfaces in IR®
have been classified up to local affine equivalence. Among the equivalence
classes the surfaces F' in (i) - (v) represent precisely those classes that
can be given in a neighbourhood U of the origin in IR? as

{(,y,2) €U : 2= f(z,y)}
with f a convergent power series of the form
f(z,y) = 2* + 2%y + higher order terms.

The surfaces F' above are pairwise locally affinely inequivalent and even
give pairwise locally CR-inequivalent CR-manifolds (since the Lie alge-
bras hol(M,a) are pairwise non-isomorphic). Note that this property
is not evident a priori: In [11] two CR-equivalent affinely homogeneous
tube manifolds in C* are given that are locally affinely inequivalent.
These examples are Levi nondegenerate and hence not 2-nondegenerate
as in our situation. The main result of [10] now states:

7.1 Theorem. Every locally homogeneous 2-nondegenerate CR-mani-
fold of dimension 5 is locally CR-equivalent to a tube M = F + iR
with F' a unique surface from the list in (i) — (v) above.

Since every locally homogeneous Levi degenerate CR-manifold M
of dimension 5 is either 2-nondegenerate or locally of the form M’ x C ,
Cartan’s classification [2] in dimension 3 together with Theorem 7.1 also
gives a local classification of all locally homogeneous Levi degenerate
CR-manifolds in dimension 5. For a local classification of a certain class
of Levi nondegenerate hypersurfaces in €* compare [14].

The tube manifolds M = F + iIR® with F from (i) - (v) are all
non-closed hypersurfaces in C* and we may ask: Do there exist closed hy-
persurfaces N C €3 that are locally homogeneous and 2-nondegenerate?
At least tube submanifolds NV of this type cannot exist that are locally
CR-equivalent to one of the manifolds M = F + 4IR* with F from (ii) -
(v). This follows from the fact that for those M in hol(M,a) there is a
unique abelian subalgebra of dimension 3.
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