On Levi-degenerate homogeneous CR-manifolds

Wilhelm KAUP*
Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

Abstract

We give a survey on the main result of [9] where all homogeneous Levi degenerate CR-manifolds in dimension 5 have been classified up to local CR-equivalence. Furthermore, we discuss the only so far known examples of 3and 4-nondegenerate locally homogeneous hypersurfaces by explicit equations and in greater detail than in [9].

1. Introduction and Preliminaries

At the beginning of every course on Complex Analysis the CauchyRiemann differential equations appear: For every domain $U \subset \mathbb{C}$ and every smooth function $f=u+i v: U \rightarrow \mathbb{C}$ complex differentiability holds if and only if at every point of U the real Jacobian $\partial(u, v) / \partial(x, y)$ in $\mathbb{R}^{2 \times 2}$ is of the form $\left(\begin{array}{c}a \\ -b\end{array} a_{a}^{b}\right)$, or equivalently, induces a complex linear endomorphism of $\mathbb{C} \approx \mathbb{R}^{2}$. More generally, for every domain $U \subset \mathbb{C}^{n}$ a smooth mapping $f: U \rightarrow \mathbb{C}^{m}$ is holomorphic (i.e. locally representable by a convergent power series) if and only if at every $a \in U$ the real Jacobian in $\mathbb{R}^{2 m \times 2 n}$ induces a complex linear operator from $\mathbb{C}^{n} \approx \mathbb{R}^{2 n}$ to $\mathbb{C}^{m} \approx \mathbb{R}^{2 m}$.

Now consider instead of open subsets in \mathbb{C}^{n} arbitrary connected smooth real submanifolds $M \subset \mathbb{C}^{n}$. At every $a \in M$ then the tangent space to M is an \mathbb{R}-linear subspace $T_{a} M \subset \mathbb{C}^{n}$ and for every smooth $f: M \rightarrow \mathbb{C}^{m}$ the differential at a is an \mathbb{R}-linear map $d f_{a}: T_{a} M \rightarrow \mathbb{C}^{m}$. It is obvious that a necessary condition for f being locally the restriction of a holomorphic \mathbb{C}^{m}-valued map, defined in an open neighbourhood of $a \in$

[^0]M with respect to \mathbb{C}^{n}, is that the restriction of $d f_{a}$ to the holomorphic tangent space
\[

$$
\begin{equation*}
H_{a} M:=T_{a} M \cap i T_{a} M \tag{1.1}
\end{equation*}
$$

\]

(that is the largest complex linear subspace of \mathbb{C}^{n} contained in the real tangent space $T_{a} M$) is complex linear. M is called a $C R$-submanifold of \mathbb{C}^{n} if the complex dimension of $H_{a} M$ does not depend on $a \in M$. This dimension is called the CR-dimension, while the real dimension of $T_{a} M / H_{a} M$ is called the CR-codimension of M. Then the collection of all $H_{a} M$ gives the holomorphic subbundle $H M$ of the tangent bundle $T M$, and multiplication with the imaginary unit i defines a bundle endomorphism J of $H M$ with $J^{2}=-\mathrm{id}$. The smooth sections in $T M$, the smooth vector fields on M, form a real Lie algebra and M satisfies the integrability condition, that is, for all smooth sections ξ, η in the subbundle $H M$ also $[J \xi, \eta]+[\xi, J \eta]$ is a section in $H M$ and

$$
\begin{equation*}
[J \xi, J \eta]-[\xi, \eta]=J([J \xi, \eta]+[\xi, J \eta]) . \tag{1.2}
\end{equation*}
$$

The abstract version of a Cauchy-Riemann manifold that we intend to use here is as follows: A smooth CR-manifold is a triple ($M, H M, J$), where M is a connected smooth manifold, $H M$ is a smooth subbundle of the tangent bundle $T M$ and J is a smooth bundle endomorphism of $H M$ such that $J^{2}=-$ id and the integrability condition (1.2) holds. J defines a complex vector space structure on every holomorphic tangent space $H_{a} M$. Instead of $(M, H M, J)$ we simply write M if the corresponding $H M$ and J are clear. The smooth CR-manifolds form a category in a natural way: A smooth mapping $\varphi: M \rightarrow M^{\prime}$ between CR-manifolds is a CR-mapping, if for every $a \in M$ and $a^{\prime}:=\varphi(a)$ the differential $d \varphi_{a}: T_{a} M \rightarrow T_{a^{\prime}} M^{\prime}$ maps the corresponding holomorphic tangent space $H_{a} M$ complex linearly to $H_{a^{\prime}} M^{\prime}$.

An important local invariant at every a of a smooth CR-manifold M is the (vector-valued) Levi from. We do not need here the full Levi form, only its kernel $K_{a} M \subset H_{a} M$. In case $M=\{z \in U: \rho(z)=0\}$ for a domain $U \subset \mathbb{C}^{n}$ and a smooth submersion $\rho: U \rightarrow \mathbb{R}^{d}$ one way of defining the kernel is

$$
\begin{aligned}
& K_{a} M:=\left\{v \in H_{a} M: \sum_{j, k=1}^{n} v_{j} \bar{w}_{k} \frac{\partial^{2} \rho(a)}{\partial z_{j} \partial \bar{z}_{k}}=0\right. \in \mathbb{C}^{d} \\
&\text { for all } \left.w \in H_{a} M\right\},
\end{aligned}
$$

which does not depend on the choice of the submersion ρ. In [3], compare also [16], a complete set of invariants has been given in the real-analytic
setting that characterizes M near a up to CR-isomorphy provided that M is Levi nondegenerate at a (that is $K M=0$) and in addition is of hypersurface type (that is, M has CR-codimension 1).

For certain CR-manifolds M we define by induction on $k \in \mathbb{N}$ higher order Levi kernels $K_{a}^{k} M \subset H_{a} M$ and say that M has constant degeneracy of order k if the $K_{a}^{k} M, a \in M$, form a subbundle $K^{k} M$ of $H M$: To start the induction just put

$$
K_{a}^{0} M:=H_{a} M \quad \text { and } \quad K_{a}^{-1} M:=T_{a} M \otimes \mathbb{C} / N_{a}
$$

with $N_{a}:=\left\{x \otimes 1-J x \otimes i: x \in H_{a} M\right\}$. Since N_{a} is a complex linear subspace, $K_{a}^{-1} M$ inherits a complex structure that we also denote by J. Embedding $T_{a} M$ into $K_{a}^{-1} M$ via $x \mapsto x \otimes 1 \bmod N_{a}$, the space $K_{a}^{-1} M$ may be thought of as the 'smallest' complex linear space containing $T_{a} M$ as real and $H_{a} M$ as complex linear subspace.
Now suppose as induction step that M has constant degeneracy of order $k \geq 0$ and that $K_{a}^{k} M \subset K_{a}^{k-1} M$ is already defined as complex linear subspace. Then it can be shown [13] that there is a unique mapping

$$
\mathcal{L}_{a}^{k+1}: H_{a} M \times K_{a}^{k} M \rightarrow K_{a}^{k-1} M / K_{a}^{k} M
$$

satisfying

$$
\mathcal{L}_{a}^{k+1}\left(\xi_{a}, \eta_{a}\right)=[\xi, \eta]_{a}+J[\xi, J \eta]_{a} \quad \bmod \quad K_{a}^{k} M
$$

for all smooth sections ξ and η in $H M$ and $K^{k} M$ respectively, and the next kernel is defined by

$$
K_{a}^{k+1} M:=\left\{v \in K_{a}^{k} M: \mathcal{L}_{a}^{k+1}\left(H_{a} M, v\right)=0\right\}
$$

\mathcal{L}_{a}^{k+1} is conjugate linear in the second and, as a consequence of the integrability condition (1.1), complex linear in the first variable. In particular, $K_{a}^{k+1} M$ is a complex linear subspace of $K_{a}^{k} M$. Also, \mathcal{L}_{a}^{1} is (up to a non-zero constant factor) the usual Levi form at $a \in M$ and $K_{a}^{1} M=K_{a} M$.

We say that the CR-manifold M has constant degeneracy if it has constant degeneracy of any order in the above sense. For instance, M has this property, if for every pair of points $a, a^{\prime} \in M$ there exist open neighbourhoods U, U^{\prime} of a, a^{\prime} together with a CR-diffeomorphism $\varphi: U \rightarrow U^{\prime}$ satisfying $\varphi(a)=a^{\prime}$. In this note we are mainly interested in manifolds of this type.

A CR-manifold M of constant degeneracy is called finitely nondegenerate if $K^{k} M=0$ for some k and is called k-nondegenerate if $k \geq 1$ is minimal with respect to this property (for the definition of
k-nondegeneracy without the assumption of 'constant degeneracy' compare e.g. [1]). In case M is finitely non-degenerate there cannot exist a domain $N \subset M$ that is CR-isomorphic to a direct product $N^{\prime} \times \mathbb{C}$ with a CR-manifold N^{\prime}. It is clear that Levi nondegenerate is the same as 1 -nondegenerate. In case $k \geq 2$ the minimal dimension for an everywhere k-nondegenerate CR-manifold is $2 k+1$. A well studied example of a homogeneous 2-nondegenerate CR-manifold in the minimal possible dimension 5 is the tube

$$
\begin{equation*}
\mathcal{M}:=\left\{z \in \mathbb{C}^{3}:\left(\operatorname{Re} z_{1}\right)^{2}+\left(\operatorname{Re} z_{2}\right)^{2}=\left(\operatorname{Re} z_{3}\right)^{2},\left(\operatorname{Re} z_{3}\right)>0\right\} \tag{1.3}
\end{equation*}
$$

over the future light cone in 3 -dimensional space time, compare [7], [9], [10], that will play a prominent role below.

The CR-manifold M is called minimal if every smooth submanifold $N \subset M$ with $H_{a} M \subset T_{a} N$ for all $a \in N$ is open in M. In case M is minimal in this sense there cannot exist a domain $N \subset M$ that is CRisomorphic to a direct product $N^{\prime} \times \mathbb{R}$ with a CR-submanifold N^{\prime}.

2. The analytic category

From now on we will only consider real-analytic CR-manifolds $(M, H M, J)$, that is, M is a real-analytic manifold, $H M \subset T M$ is a realanalytic subbundle and also J is real-analytic. Also these CR-manifolds form a category with respect to real-analytic CR-mappings. In particular, we now call two such manifolds M and M^{\prime} CR-equivalent if there exists a CR-diffeomorphism $M \rightarrow M^{\prime}$ that is real-analytic in both directions. It is well known that every (real-analytic) CR-manifold M can be realized locally as a real-analytic CR-submanifold of some \mathbb{C}^{n}.
$\operatorname{By} \operatorname{Aut}(M)$ we denote the group of all (real-analytic) CR-automorphisms of M. In case Aut (M) acts transitively on M the CR-manifold M is called homogeneous. Vector fields on M are just the sections ξ in $T M$ over M - for every $a \in M$ we write ξ_{a} instead of $\xi(a) \in T_{a} M$. A realanalytic vector field on M is called an infinitesimal CR-transformation if the corresponding local flow consists of local CR-isomorphisms. Denote by $\mathfrak{h o l}(M)$ the space of all infinitesimal CR-transformations on M, which is a real Lie algebra with respect to the usual bracket. It is known, compare e.g. [1], that a vector field ξ on M is contained in $\mathfrak{h o l}(M)$ if and only if every point of M has an open neighbourhood N that can be realized as a real-analytic submanifold of a domain U in some \mathbb{C}^{n} in such a way that $\left.\xi\right|_{N}$ extends to a holomorphic vector field on U.

Our interest in the following is mainly in the local CR-structure at arbitrary points $a \in M$, that is, in the CR-manifold germs (M, a). Denote by $\mathfrak{h o l}(M, a)$ the space of all germs of vector fields in $\mathfrak{h o l}(N)$, where $N \subset M$ runs through all open neighbourhoods of a in M. Clearly,
also $\mathfrak{h o l}(M, a)$ is a real Lie algebra in an obvious way and there is a canonical embedding $\mathfrak{h o l}(M) \hookrightarrow \mathfrak{h o l}(M, a)$. In certain cases more can be said:
2.1 Proposition. Suppose that the $C R$-manifold M is simply connected and that all Lie algebras $\mathfrak{h o l}(M, a), a \in M$, have the same finite dimension. Then for every $a \in M$ the canonical injection $\mathfrak{h o l}(M) \rightarrow$ $\mathfrak{h o l}(M, a)$ is an isomorphism of Lie algebras.
Proof. Denote by $\pi: \mathfrak{H} \rightarrow M$ the sheaf whose stalks $\pi^{-1}(a)$ are the Lie algebras $\mathfrak{h o l}(M, a)$. For every domain $N \subset M$ then $\mathfrak{h o l}(N)$ can be identified with the space of continuous sections over N in \mathfrak{H}. Every $a \in$ M has an open neighbourhood N in M such that $\mathfrak{h o l}(N) \rightarrow \mathfrak{h o l}(M, c)$ is an isomorphism for every $c \in N$. This implies that the connected components of \mathfrak{H} are coverings of M and hence are single sheeted since M is simply connected.

The CR-manifold M is called locally homogeneous if for every $a, a^{\prime} \in M$ there exist open neighbourhoods N, N^{\prime} in M together with a CR-isomorphism $N \rightarrow N^{\prime}$ sending a to a^{\prime}. By [17] this is equivalent to the condition: To every $a \in M$ there exists a Lie subalgebra $\mathfrak{g} \subset \mathfrak{h o l}(M, a)$ of finite dimension such that the canonical evaluation map $\mathfrak{g} \rightarrow T_{a} M, \xi \mapsto \xi_{a}$, is surjective. Every locally homogeneous CRmanifold M has constant degeneracy in the sense of the preceding section. In particular, all complex subbundles $K^{k} M \subset T M, k \in \mathbb{N}$, are defined.

It is known that for every locally homogeneous CR-manifold M the condition $\operatorname{dim} \mathfrak{h o l}(M, a)<\infty$ for some $a \in M$ (and hence for all $a \in M$) is equivalent to M being finitely nondegenerate and minimal (as defined in the preceding section).

For homogeneous Levi nondegenerate manifolds large classes of examples are known: One of the best studied examples is for every $n \geq 2$ the euclidian hypersphere

$$
\begin{equation*}
S:=\left\{z \in \mathbb{C}^{n}:(z \mid z)=\sum z_{k} \bar{z}_{k}=1\right\} \tag{2.2}
\end{equation*}
$$

the boundary of the euclidian ball $B:=\left\{z \in \mathbb{C}^{n}:(z \mid z)<1\right\}$. Every $g \in \operatorname{Aut}(S)$ extends to a biholomorphic automorphism of the ball B and thus gives a group isomorphism $\operatorname{Aut}(S) \cong \operatorname{Aut}(B) \cong \operatorname{PSU}(n, 1)$. In particular, S is homogeneous (clearly, the subgroup $\mathrm{SU}(n) \subset \mathrm{GL}(n, \mathbb{C})$ is already transitive on S). For every $a \in S$ the holomorphic tangent space $H_{a} S=a^{\perp}$ is the (complex) orthogonal complement of the vector a. In particular, $a \mapsto H_{a} S$, defines an 'anti-CR map' from S to the Grassmannian of all complex hyperplanes in \mathbb{C}^{n}.

Further classes of examples can be found, for instance, in [12]. One of these is as follows: Fix arbitrary integers $p \geq q \geq 1$ and let
$E:=\mathbb{C}^{p \times q}$ be the space of all complex $p \times q$-matrices. Then the compact group $K:=\operatorname{SU}(p) \times \operatorname{SU}(q)$ acts on E by $z \mapsto u z v^{*},(u, v) \in K$. For every $a \in E$ the orbit $M:=K(a)$ is a Levi nondegenerate minimal homogeneous CR-submanifold of E. In case $M^{\prime}=K^{\prime}\left(a^{\prime}\right)$ for $a^{\prime} \in \mathbb{C}^{p^{\prime} \times q^{\prime}}$ and $K^{\prime}:=\operatorname{SU}\left(p^{\prime}\right) \times \operatorname{SU}\left(q^{\prime}\right)$ with $p^{\prime} \geq q^{\prime} \geq 1$ is another orbit of this type, the manifolds M and M^{\prime} are locally CR-equivalent if and only if $p^{\prime}=p$, $q^{\prime}=q$ and one of the following alternatives holds.
(1) a invertible and hence $p=q: M^{\prime}=t M$ or $M^{\prime}=t M^{-1}$ for some $t \in \mathbb{C}^{*}$ and $M^{-1}:=\left\{z^{-1}: z \in M\right\} \subset \mathrm{GL}(p, \mathbb{C})$.
(2) a not invertible: $M^{\prime}=t M$ for some $t>0$.

3. Tube manifolds

In the following let E be a complex vector space of finite dimension. Fix a conjugation $z \mapsto \bar{z}$ on E and denote by $V:=\{z \in E: z=\bar{z}\}$ the corresponding real form. Then $E=V \oplus i V$ and for every (connected immersed) real-analytic submanifold $F \subset V$ the corresponding tube $M:=F+i V$ is a CR-submanifold of E. Indeed, the abelian group A of all translations $z \mapsto z+i v, v \in V$, satisfies $M=A(F)$ and for every $a \in F \subset M$ we have $H_{a} M=T_{a} F \oplus i T_{a} F$. More generally, since the conjugation leaves M invariant, all kernels $K_{a}^{k} M$ (if defined) are also invariant under the conjugation and hence are of the form $K_{a}^{k} M=$ $K_{a}^{k} F \oplus i K_{a}^{k} F$ for $K_{a}^{k} F:=K_{a}^{k} M \cap T_{a} F$.

For a certain class of tube manifolds $M=F+i V$ a simple method for the actual computation of the kernels $K_{a}^{k} F$ has been given in [10]: Let \mathfrak{A} be a linear space of affine mappings $\xi: V \rightarrow V$ such that
(i) $\xi_{x}:=\xi(x) \in T_{x} F$ for all $\xi \in \mathfrak{A}$ and all $x \in F$,
(ii) the mapping $\mathfrak{A} \rightarrow T_{a} F, \xi \mapsto \xi_{a}$, is a linear isomorphism.

Then the CR-submanifold $M=F+i V$ is locally homogeneous and the kernels $K_{a}^{k} F$ are recursively given by

$$
\begin{aligned}
K_{a}^{0} F & =T_{a} F \text { and } \\
K_{a}^{k+1} F & =\left\{v \in K_{a}^{k} F: \xi^{\operatorname{lin}}(v) \in K_{a}^{k} F \text { for all } \xi \in \mathfrak{A}\right\},
\end{aligned}
$$

where $\xi^{\text {lin }}=\xi-\xi_{0}$ is the linear part of ξ.
Tubes form a very special class of CR-manifolds: Indeed, for every tube M and every $a \in M$ the Lie algebra $\mathfrak{h o l}(M, a)$ must contain an abelian subalgebra of dimension
(*) $\quad n:=$ CR- $\operatorname{dim} M+$ CR-codim M.
As an example consider for fixed $p \geq q \geq 1$ and $a \in E:=\mathbb{C}^{p \times q}$ noninvertible the submanifold $M:=\{u a v: u \in \operatorname{SU}(p), v \in \operatorname{SU}(q)\}$ of E, that is, the case (2) at the end of Section 2. Then M is homogeneous, Levi
nondegenerate, minimal and $n=r(p+q-r)$ for the number n defined by the formula $(*)$, where r is the rank of the matrix a (compare [12] for details). Furthermore, M is of hypersurface type if and only if $r=1$. In M there exists a unique (rectangular) diagonal matrix d with non-negative real diagonal entries $d_{11} \geq d_{22} \geq \cdots \geq d_{q q}$. In case $q>1$ and $d_{11} \neq d_{q q}$ the Lie algebra $\mathfrak{h o l}(M, a)$ is isomorphic to $\mathfrak{u}(p) \times \mathfrak{s u}(q)$ and hence does not contain any abelian Lie subalgebra of dimension $p+q$. Therefore, in this case the germ (M, a) has no local tube realization. On the other hand, it can be shown that (M, a) always has a tube realization if $r=1$. Notice that among these cases the sphere S from (2.2) occurs for $p=n$, $q=1, d_{11}=1$ and that S is locally CR-equivalent, for instance, to the tube with base

$$
F:=\left\{x \in \mathbb{R}^{n}: \sum e^{2 x_{k}}=1\right\} .
$$

Indeed, the locally biholomorphic map $z \mapsto\left(e^{z_{1}}, e^{z_{2}}, \ldots, e^{z_{n}}\right)$ realizes $F+i \mathbb{R}^{n}$ as universal cover of $S \cap\left(\mathbb{C}^{*}\right)^{n}$.

In [4] all closed tube hypersurfaces in \mathbb{C}^{n} have been classified up to affine equivalence that are locally CR-equivalent to the sphere (2.2). In [11] the same has been done for the pseudo-sphere

$$
\left\{z \in \mathbb{C}^{n}: \sum_{k<n} z_{k} \bar{z}_{k}=1+z_{n} \bar{z}_{n}\right\}
$$

of signature $(n-1,1)$. In both cases there is only a finite number of equivalence classes. These were obtained by solving a certain system of second order differential equations coming from [3]. In particular, this method does not extend to the Levi degenerate case nor to higher CRcodimensions.

4. Examples of 2- 3- 4-nondegenerate manifolds

In the following we discuss some of the examples presented in section 5 of [10]: For fixed integers $k \in\{2,3,4\}$ and $c \geq 1$ let $V \subset \mathbb{R}[u, v]$ be the subspace of all homogeneous polynomials of degree $m:=k+c-1$. We consider every $p \in V$ as polynomial function on \mathbb{R}^{2} and also on \mathbb{C}^{2} if convenient. By $G \subset \mathrm{GL}(V)$ we denote the subgroup of all transformations $p \mapsto \pm p \circ g$ with $g \in \mathrm{GL}(2, \mathbb{R})$. Then G acts irreducibly on V and, as a consequence, for every non-zero G-orbit F in V the corresponding tube manifold $M=F+i V$ is a minimal (not necessarily connected) CR-submanifold of $E:=V \oplus i V$. Note that G always has two connected components and is isomorphic to $G L(2, \mathbb{R})$ if m is odd. The connected identity component G^{0} of G consists of all transformations $p \mapsto t \cdot(p \circ g)$ with $t>0$ and $g \in \operatorname{SL}(2, \mathbb{R})$.

By definition, the function $p=p(u, v) \in V$ vanishes of order $\geq d \in$ \mathbb{N} at $\left(u_{0}: v_{0}\right) \in \mathbb{P}_{1}(\mathbb{C})$ if all partial derivatives up to degree $d-1$ vanish
at $\left(u_{0}, v_{0}\right) \in \mathbb{C}^{2}$. Counted with multiplicities, every $p \neq 0$ has exactly m zeroes. The group $\mathrm{GL}(2, \mathbb{R})$ acts by linear fractional transformations on $\mathbb{P}_{1}(\mathbb{C})$ with two orbits, $\mathbb{P}_{1}(\mathbb{R})$ and its complement. For every $g \in$ $\mathrm{GL}(2, \mathbb{R})$ the zeroes of p and $\pm p \circ g$ differ by an application of g on $\mathbb{P}_{1}(\mathbb{C})$.

Now consider the set P of all $p \neq 0$ in V with the following property: All zeroes of p are in $\mathbb{P}_{1}(\mathbb{R})$, one of these has order $m-(k-2)$ while the remaining $(k-2)$ zeroes have order 1 . From the above it is clear that P for our particular choices of k is a G-orbit. Denote by F the connected component of P that contains the polynomial

$$
p:= \begin{cases}v^{m} & k=2 \\ u v^{m-1} & k=3 \\ \left(u^{2}-v^{2}\right) v^{m-2} & k=4 .\end{cases}
$$

Then the connected identity component G^{0} of G acts transitively on F. With the criterion in Section 3 it is easily seen that

$$
K_{p}^{r} F=\sum_{j=0}^{k-1-r} \mathbb{R} u^{j} v^{m-j} \text { for all } r \geq 0 .
$$

In particular, the tube manifold $M:=F+i V$ is a k-nondegenerate homogeneous CR-submanifold of $E=V \oplus i V$ with CR-dimension k and CR-codimension c. For better distinction we also write $F^{k, c}:=F$ and $M^{k, c}:=M$ in the following.

The CR-manifolds $\mathcal{M}^{k, c}$ from Section 5 in [10] coincide with our $M^{k, c}$ for $k=2,3$. The 4 -nondegenerate homogeneous CR-submanifold $\mathcal{M}^{4, c}$ is the tube over the G^{0}-orbit $\mathcal{F}^{4, c}$ defined as follows: It is a connected component of the set Q of all $q \neq 0$ in V having a zero of order $(m-2)$ in $\mathbb{P}_{1}(\mathbb{R})$ and 2 zeros outside $\mathbb{P}_{1}(\mathbb{R})$. A polynomial in Q is, for instance, $\left(u^{2}+v^{2}\right) v^{m-2}$.

Let us identify \mathbb{R}^{m+1} and V via

$$
\begin{equation*}
\left(x_{0}, x_{1}, \ldots, x_{m}\right) \cong \sum_{j=0}^{m} x_{j}\binom{m}{j} u^{j} v^{m-j} . \tag{4.1}
\end{equation*}
$$

Then $F^{2, c}, F^{3, c}, F^{4, c}, \mathcal{F}^{4, c}$ are respectively the G^{0}-orbits of the points $(1,0, \ldots, 0),(0,1,0, \ldots, 0),(-1,0,1,0, \ldots, 0),(1,0,1,0, \ldots, 0)$.
Notice that $F^{2, c} \cup-F^{2, c}$ is the unique G-orbit that is closed in $V \backslash\{0\}$. It is also the unique 2-dimensional G-orbit in V and consists of all $p \in V$ that are a power of a non-zero linear form on V. The $F^{2, c}$ will occur again in Section 5.

Denote for every $x=\left(x_{0}, \ldots, x_{m}\right)$ by $D(x)$ the resultant of the two polynomials $m^{-1} \partial f / \partial u$ and $m^{-1} \partial f / \partial v$, where $f \in V$ corresponds to x by (4.1). Then D is a homogeneous polynomial of degree $2 m-2$ in x and $D(x)=0$ if and only if the corresponding polynomial f has a multiple zero in $\mathbb{P}_{1}(\mathbb{C})$. In particular, every F of the form $F^{k, c}$ or $\mathcal{F}^{4, c}$ is contained in the hypersurface $S:=\left\{x \in \mathbb{R}^{m+1}: D(x)=0\right\}$. In case $c=1$ the orbit F is open in the nonsingular part of S and we have the following explicit formula for D :
Case $k=2$: Here $D(x)=x_{0} x_{2}-x_{1}^{2}$. As a consequence,

$$
F^{2,1}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}: D(x)=0<x_{0}+x_{2}\right\}
$$

and thus $M^{2,1}$ coincides with the future light cone tube \mathcal{M} in (1.3) up to a complex linear isomorphism.
Case $k=3$: Here $D(x)=x_{0}^{2} x_{3}^{2}-3 x_{1}^{2} x_{2}^{2}-6 x_{0} x_{1} x_{2} x_{3}+4 x_{1}^{3} x_{3}+4 x_{0} x_{2}^{3}$ (the formula presented in Example 1.22 of [15] is not correct). Furthermore, $D(x)=0$ if and only if the orbit $G(x)$ has dimension <4, see [10]. Therefore $F^{3,1}$ consists of all $x \in \mathbb{R}^{4}$ for which the matrix

$$
\left(\begin{array}{cccc}
0 & x_{1} & 2 x_{2} & 3 x_{3} \\
3 x_{1} & 2 x_{2} & x_{3} & 0 \\
0 & x_{0} & 2 x_{1} & 3 x_{2} \\
3 x_{0} & 2 x_{1} & x_{2} & 0
\end{array}\right)
$$

has rank 3. In particular, $F^{3,1}$ is the nonsingular part of S.
Case $k=4$: Here, compare [15] p. 29, $D(x)=g_{2}(x)^{3}-27 g_{3}(x)^{2}$ with

$$
\begin{aligned}
g_{2}(x) & :=x_{0} x_{4}-4 x_{1} x_{3}+3 x_{2}^{2} \text { and } \\
g_{3}(x) & :=x_{0} x_{2} x_{4}-x_{0} x_{3}^{2}-x_{1}^{2} x_{4}+2 x_{1} x_{2} x_{3}-x_{2}^{3}
\end{aligned}
$$

The polynomials g_{2}, g_{3} are invariant under the action of the group $\mathrm{SL}(2, \mathbb{R})$ on $V=\mathbb{R}^{5}$ but not under G^{0}. This allows to describe the orbit structure of G^{0} from the CR-viewpoint in more detail: For $0 \leq j \leq 4$ let $S^{[j]}$ be the union of all G^{0}-orbits in S of dimension j, that is, the set of all $x \in S$ for which the matrix

$$
\left(\begin{array}{ccccc}
0 & x_{1} & 2 x_{2} & 3 x_{3} & 4 x_{4} \\
4 x_{1} & 3 x_{2} & 2 x_{3} & x_{4} & 0 \\
0 & x_{0} & 2 x_{1} & 3 x_{2} & 4 x_{3} \\
4 x_{0} & 3 x_{1} & 2 x_{2} & x_{3} & 0
\end{array}\right)
$$

has rank j (for every $x \notin S$ the orbit $G^{0}(x)$ has dimension 4). A further decomposition of S is given by the three G^{0}-invariant subsets

$$
S^{ \pm}:=\left\{x \in S: \pm g_{3}(x)>0\right\}, \quad S^{0}:=\left\{x \in S: g_{3}(x)=0\right\}
$$

satisfying $S^{-}=-S^{+}$. In a total, S consists of $13 G^{0}$-orbits, more precisely:
(i) $S^{+} \backslash S^{[3]}=S^{+} \cap S^{[4]}=F^{4,1} \cup \mathcal{F}^{4,1}$
(ii) $S^{+} \cap S^{[3]}=G^{0}(0,0,1,0,0) \cup-G^{0}(1,0,2,0,1)$
(iii) $S^{0} \cap S^{[4]}=S^{0} \cap S^{[1]}=\emptyset$
(iv) $S^{0} \cap S^{[3]}=F^{3,2} \cup-F^{3,2}$
(v) $S^{0} \cap S^{[2]}=F^{2,3} \cup-F^{2,3}$
with 2-nondegenerate orbits in (ii). The nonsingular part of S is

$$
\pm\left(F^{4,1} \cup \mathcal{F}^{4,1} \cup-G^{0}(1,0,2,0,1)\right)
$$

and $\overline{F^{4,1}} \cap \overline{\mathcal{F}^{4,1}}=G^{0}(0,0,1,0,0) \cup F^{2,3} \cup\{0\}$.
The case $k=3, c=1$ gives some affinely homogeneous tube domains in \mathbb{C}^{4} : As before, $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=x_{0} v^{3}+3 x_{1} u v^{2}+3 x_{2} u^{2} v+x_{3} u^{3}$ identifies \mathbb{R}^{4} and V. The subgroup $G \subset \mathrm{GL}(V)=\mathrm{GL}(4, \mathbb{R})$ is isomorphic to $\mathrm{GL}(2, \mathbb{R})$ and has precisely two open orbits in $\mathbb{R}^{4}=V$, namely

$$
\Omega^{ \pm}:=\left\{x \in \mathbb{R}^{4}: \pm D(x)>0\right\} .
$$

As subset of V then Ω^{-}consists of all polynomials $p \neq 0$ having three distinct zeroes in $\mathbb{P}_{1}(\mathbb{R})$ while Ω^{+}consists of all $p \neq 0$ with two zeroes outside $\mathbb{P}_{1}(\mathbb{R})$. This shows that every $\Omega^{ \pm}$is connected and $\mathcal{D}^{ \pm}:=\Omega^{ \pm}+i \mathbb{R}^{4}$ is an affinely homogeneous tube domain in \mathbb{C}^{4}. From $\Omega^{ \pm}=-\Omega^{ \pm}$we see that the convex hull of $\Omega^{ \pm}$contains the origin and hence coincides with \mathbb{R}^{4}. This implies that every holomorphic function on $\mathcal{D}^{ \pm}$has a holomorphic extension to \mathbb{C}^{4}. In particular, every bounded holomorphic function on $\mathcal{D}^{ \pm}$is constant. Since $D(x)$ is invariant under the action of $\mathrm{SL}(2, \mathbb{R})$ on $V=\mathbb{R}^{4}$ the $\mathrm{SL}(2, \mathbb{R})$-orbits in $\Omega^{ \pm}$are the hypersurfaces $S^{\alpha}:=\left\{x \in \mathbb{R}^{4}: D(x)=\alpha\right\}$ with $\alpha \in \mathbb{R}^{ \pm}$. With the criterion in Section 3 it is easily seen that all $S^{\alpha}, \alpha \neq 0$, are Levi nondegenerate.

So far we do not have any example of a locally homogeneous CRmanifold that is k-nondegenerate with $k \geq 5$.

5. Conical manifolds of CR-dimension 2

In this section we discuss linear homogeneous cones F of dimension 2 in a real vector space V of dimension $n \geq 3$. For every such F the corresponding tube $M:=F+i V$ is a Levi degenerate homogeneous CRsubmanifold of $E:=V \oplus i V$ with CR-dimension 2 and CR-codimension $(n-2)$. In case F is contained in a hyperplane $W \subset V$ the manifold M is CR-equivalent to the direct product $(F+i W) \times \mathbb{R}$. We therefore always
assume in the following that F is not contained in any hyperplane of V. Then M is automatically minimal and 2 -nondegenerate as CR-manifold, compare [10]. In particular, the Lie algebra $\mathfrak{h o l}(M, a)$ then has finite dimension for every $a \in M$.

In [10] all M of the above type have been classified up to local CR-equivalence and all $\mathfrak{h o l}(M, a)$ have been explicitly determined. For a description we recall some elementary facts: $a \in V$ is called a cyclic vector of the endomorphism $\varphi \in \operatorname{End}(V)$ if the powers $\varphi^{k}(a), k \in \mathbb{N}$, span the vector space V. By $\operatorname{Cyc}(V) \subset \operatorname{End}(V)$ we denote the subset of all cyclic endomorphisms, that is, of all φ having a cyclic vector. Every cyclic φ is uniquely determined up to conjugation in $\mathrm{Cyc}(V)$ by the (unordered) sequence $\alpha_{1}, \ldots, \alpha_{n}$ of all its characteristic roots in \mathbb{C} (more precisely the roots of the characteristic polynomial of φ with mulitplicities counted). We say that $\alpha_{1}, \ldots, \alpha_{n}$ form an arithmetic progression if, after a suitable permutation, the differences $\left(\alpha_{k+1}-\alpha_{k}\right), 1 \leq k<n$, do not depend on k. In case φ has trace 0 this is equivalent to $\varphi \in \rho(\mathfrak{s l}(2, \mathbb{R}))$ where $\rho: \mathfrak{s l}(2, \mathbb{R}) \rightarrow \operatorname{End}(V)$ is the (essentially) unique irreducible Lie algebra representation.

To every $\varphi \in \operatorname{Cyc}(V)$ we associate a linearly homogeneous surface $F=F^{\varphi}$ in V as follows: For the abelian Lie subalgebra $\mathfrak{h}:=\mathfrak{h}^{\varphi}:=$ \mathbb{R} id $\oplus \mathbb{R} \varphi \subset \operatorname{End}(V)$ consider the subgroup $H:=\exp (\mathfrak{h}) \subset \mathrm{GL}(V)$. Then $a \in V$ is cyclic for φ if and only if the orbit $H(a)$ is not contained in a hyperplane of V and any two cyclic orbits $H(a), H\left(a^{\prime}\right)$ differ by some $g \in \mathrm{GL}(V)$. Therefore, if we fix a cyclic vector $a \in V$ and put $F^{\varphi}:=H(a)$, the CR-structure on the tube $M^{\varphi}:=F^{\varphi}+i V$ does not depend on the choice of the cyclic vector $a \in V$. Also, this structure only depends on the characteristic roots of φ counted with multiplicities.
The case where $\alpha_{1}, \ldots, \alpha_{n}$ form an arithmetic progression: Then there exists a faithful irreducible representation $\rho: \mathfrak{g l}(2, \mathbb{R}) \rightarrow \operatorname{End}(V)$ with $\varphi \in \rho(\mathfrak{g l}(2, \mathbb{R}))$ such that every $\psi \in \rho(\mathfrak{g l}(2, \mathbb{R}))$, considered as vector field on V, is tangent to $F^{\varphi} \subset V$. This means that F^{φ} is locally linearly equivalent to $F^{2, n-2}$ as considered in Section 4. It can be shown that for every $a \in M^{\varphi}$

$$
\mathfrak{h o l}\left(M^{\varphi}, a\right) \cong \begin{cases}\mathfrak{s o}(2,3) & n=3 \\ \mathfrak{g l}(2, \mathbb{R}) \ltimes_{\rho} V & \text { otherwise } .\end{cases}
$$

The case where $\alpha_{1}, \ldots, \alpha_{n}$ do not form an arithmetic progression: Without loss of generality we may always assume for M^{φ} that the cyclic endomorphism φ is tracefree, that is $\alpha_{1}+\ldots+\alpha_{n}=0$. Then, if φ^{\prime} is another tracefree cyclic endomorphism with eigenvalues $\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}$, the following conditions are equivalent: (compare Prop. 7.6 in [10])
(i) M^{φ} and $M^{\varphi^{\prime}}$ are locally (globally) CR-equivalent.
(ii) F^{φ} and $F^{\varphi^{\prime}}$ are locally (globally) linearly equivalent.
(iii) Modulo a suitable permutation of the indices in one of the eigenvalue strings, $\alpha_{k}^{\prime}=t \alpha_{k}$ holds for some $t \in \mathbb{R}^{*}$ and all $1 \leq k \leq n$.
(iv) $\mathfrak{h o l}\left(M^{\varphi}\right)$ and $\mathfrak{h o l}\left(M^{\varphi^{\prime}}\right)$ are isomorphic as Lie algebras.

Furthermore, $\mathfrak{h o l}\left(M^{\varphi}, a\right) \cong \mathfrak{h o l}\left(M^{\varphi}\right) \cong \mathfrak{h}^{\varphi} \ltimes V$ holds for all $a \in M^{\varphi}$.
Notice that conversely every linearly homogeneous connected cone $F \subset V$ not contained in a hyperplane of V is locally linearly equivalent to some M^{φ} with $\varphi \in \operatorname{Cyc}(V)$ tracefree.

6. A nonconical manifold of CR-dimension 2

As in Section 4 let $V \subset \mathbb{R}[u, v]$ be the subspace of all homogeneous polynomials of degree $m \geq 3$ and denote by $\Gamma \subset G L(2, \mathbb{R})$ the subgroup of all transformations $(u, v) \mapsto(r u, t u+v)$ with $t \in \mathbb{R}$ and $r>0$. Then Γ acts on V by $p \mapsto p \circ g^{-1}$ and leaves the affine hyperplane

$$
W:=v^{m}+\sum_{k=1}^{m} \mathbb{R} v^{k} v^{m-k}
$$

invariant. Setting $\left(x_{1}, x_{2}, \ldots, x_{m}\right)=v^{m}+\sum_{k=1}^{m} x_{k}\binom{m}{k} v^{k} v^{m-k}$ identifies \mathbb{R}^{m} with W and Γ becomes a group Σ of affine transformations on \mathbb{R}^{m}. The orbit

$$
C:=\Sigma(0)=\left\{\left(t, t^{2}, \ldots, t^{m}\right) \in \mathbb{R}^{m}: t \in \mathbb{R}\right\}
$$

is the twisted m-ic. Its development $S:=\bigcup_{c \in C}\left(c+T_{c} C\right)$ is divided by C into the two linearly equivalent orbits $\Sigma(\pm a)$, where $a:=(1,0, \ldots, 0)$. Then with $\gamma(t):=\left(t, t^{2}, \ldots, t^{m}\right)$

$$
F:=\Sigma(a)=\left\{\gamma(t)+r \gamma^{\prime}(t): t \in \mathbb{R}, r>0\right\}
$$

is an affinely homogeneous surface in \mathbb{R}^{m} (compare [6], p. 45 for the special case $m=3$). The corresponding tube $M:=F+i \mathbb{R}^{m}$ is a homogeneous minimal 2-nondegenerate CR-manifold of CR-dimension 2 not locally CR-equivalent to any of the examples in the previous section. For every $a \in M$ the Lie algebra $\mathfrak{h o l}(M, a)$ has dimension $m+2$.

7. The classification in dimension 5

Our examples so far give the following affinely homogeneous 2nondegenerate tube manifolds $M:=F+i \mathbb{R}^{3} \subset \mathbb{C}^{3}$ of dimension 5 , where r, t run over all real numbers with $r>0$:
(i) $F=\left\{r(\cos t, \sin t, 1) \in \mathbb{R}^{3}\right\}$ the future light cone,
(ii) $F=\left\{r\left(\cos t, \sin t, e^{\omega t}\right) \in \mathbb{R}^{3}\right\}$ with $\omega>0$ arbitrary,
(iii) $F=\left\{r\left(1, t, e^{t}\right) \in \mathbb{R}^{3}\right\}$,
(iv) $F=\left\{r\left(1, e^{t}, e^{\theta t}\right) \in \mathbb{R}^{3}\right\}$ with $\theta>2$ arbitrary,
(v) $F=\left\{\gamma(t)+r \gamma^{\prime}(t) \in \mathbb{R}^{3}\right\}$, where $\gamma(t):=\left(t, t^{2}, t^{3}\right)$ parameterizes the twisted cubic and $\gamma^{\prime}(t)=\left(1,2 t, 3 t^{2}\right)$.
In case (i) $M \cong \mathcal{M}$, see (1.3), and $\mathfrak{h o l}(M) \cong \mathfrak{h o l}(M, a) \cong \mathfrak{s o}(2,3)$ is semisimple with dimension 10 for all $a \in M$. In all other cases M is simply connected and $\mathfrak{h o l}(M) \cong \mathfrak{h o l}(M, a)$ is a solvable Lie algebra of dimension 5.

In [6], compare also [5], all affinely homogeneous surfaces in \mathbb{R}^{3} have been classified up to local affine equivalence. Among the equivalence classes the surfaces F in (i) - (v) represent precisely those classes that can be given in a neighbourhood U of the origin in \mathbb{R}^{3} as

$$
\{(x, y, z) \in U: z=f(x, y)\}
$$

with f a convergent power series of the form

$$
f(x, y)=x^{2}+x^{2} y+\text { higher order terms. }
$$

The surfaces F above are pairwise locally affinely inequivalent and even give pairwise locally CR-inequivalent CR-manifolds (since the Lie algebras $\mathfrak{h o l}(M, a)$ are pairwise non-isomorphic). Note that this property is not evident a priori: In [11] two CR-equivalent affinely homogeneous tube manifolds in \mathbb{C}^{3} are given that are locally affinely inequivalent. These examples are Levi nondegenerate and hence not 2-nondegenerate as in our situation. The main result of [10] now states:
7.1 Theorem. Every locally homogeneous 2-nondegenerate CR-manifold of dimension 5 is locally $C R$-equivalent to a tube $M=F+i \mathbb{R}^{3}$ with F a unique surface from the list in (i) - (v) above.

Since every locally homogeneous Levi degenerate CR-manifold M of dimension 5 is either 2-nondegenerate or locally of the form $M^{\prime} \times \mathbb{C}$, Cartan's classification [2] in dimension 3 together with Theorem 7.1 also gives a local classification of all locally homogeneous Levi degenerate CR-manifolds in dimension 5 . For a local classification of a certain class of Levi nondegenerate hypersurfaces in \mathbb{C}^{3} compare [14].

The tube manifolds $M=F+i \mathbb{R}^{3}$ with F from (i) - (v) are all non-closed hypersurfaces in \mathbb{C}^{3} and we may ask: Do there exist closed hypersurfaces $N \subset \mathbb{C}^{3}$ that are locally homogeneous and 2-nondegenerate? At least tube submanifolds N of this type cannot exist that are locally CR-equivalent to one of the manifolds $M=F+i \mathbb{R}^{3}$ with F from (ii) (v). This follows from the fact that for those M in $\mathfrak{h o l}(M, a)$ there is a unique abelian subalgebra of dimension 3 .

References

1. Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Real Submanifolds in Complex Spaces and Their Mappings. Princeton Math. Series 47, Princeton Univ. Press, 1998.
2. Cartan, É.: Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes. Annali di Matematica Pura ed Applicata 11/1 (1933) 17-90.
3. Chern, S.S., Moser, J.K.: Real hypersurfaces in complex manifolds. Acta. Math. 133 (1974), 219-271.
4. Dadok, J.,Yang, P.: Automorphisms of tube domains and spherical hypersurfaces. Amer. J. Math. 107 (1985), 999-1013.
5. Doubrov, B., Komrakov, B., Rabinovich, M.: Homogeneous surfaces in the threedimenaional affine geometry. In: Geometry and Topology of Submanifolds, VIII, World Scientific, Singapore 1996, pp. 168-178
6. Eastwood, M., Ezhov, V.: On Affine Normal Forms and a Classification of Homogeneous Surfaces in Affine Three-Space. Geometria Dedicata 77 (1999), 11-69.
7. Ebenfelt, P.: Uniformly Levi degenerate CR manifolds: the 5-dimensional case. Duke Math. J. 110 (2001), 37-80. Correction: Duke Math. J. 131 (2006), 589591.
8. Fels, G.: Locally homogeneous finitely nondegenerate CR-manifolds. Math. Research Letters, to appear.
9. Fels, G., Kaup, W.: CR-manifolds of dimension 5: A Lie algebra approach. J. Reine Angew. Math, 604 (2007), 47-71.
10. Fels, G., Kaup, W.: Classification of Levi degenerate homogeneous CR-manifolds of dimension 5. Acta Math., to appear
11. Isaev, A.V., Mishchenko, M.A.: Classification of spherical tube hypersurfaces that have one minus in the Levi signature form. Math. USSR-Izv. 33 (1989), 441-472.
12. Kaup, W., Zaitsev, D.: On the CR-structure of compact group orbits associated with bounded symmetric domains. Inventiones math. 153, 45-104 (2003).
13. Kaup, W., Zaitsev, D.: On local CR-transformations of Levi degenerate group orbits in compact Hermitian symmetric spaces. J. Eur. Math. Soc. 8 (2006), 465-490.
14. Loboda, A.V.: Homogeneous nondegenerate surfaces in \mathbb{C}^{3} with two-dimensional isotropy groups. (Russian) translation in Funct. Anal. Appl. 36 (2002), 151-153.
15. Mukai, S.: An introduction to invariants and moduli. Cambridge Univ. Press 2003
16. Tanaka, N.: On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables. J. Math. Soc. Japan 14 (1962), 397-429.
17. Zaitsev, D.: On different notions of homogeneity for CR-manifolds. Asian J. Math. 11 (2007), 331-340.

[^0]: * e-mail: kaup@uni-tuebingen.de

 Key words and phrases. CR-manifolds, k-nondegenerate
 AMS 2000 subject classifications. $32 \mathrm{~V} 05,32 \mathrm{~V} 40$

