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Abstract. We give a survey on the main result of [9] where all homogeneous
Levi degenerate CR-manifolds in dimension 5 have been classified up to local
CR-equivalence. Furthermore, we discuss the only so far known examples of 3-
and 4-nondegenerate locally homogeneous hypersurfaces by explicit equations
and in greater detail than in [9].

1. Introduction and Preliminaries

At the beginning of every course on Complex Analysis the Cauchy-
Riemann differential equations appear: For every domain U ⊂ C and
every smooth function f = u + iv : U → C complex differentiability
holds if and only if at every point of U the real Jacobian ∂(u, v)/∂(x, y)
in IR2×2 is of the form

(
a b
−ba

)
, or equivalently, induces a complex linear

endomorphism of C ≈ IR2. More generally, for every domain U ⊂ Cn a
smooth mapping f : U → Cm is holomorphic (i.e. locally representable
by a convergent power series) if and only if at every a ∈ U the real
Jacobian in IR2m×2n induces a complex linear operator from Cn ≈ IR2n

to Cm ≈ IR2m.

Now consider instead of open subsets in Cn arbitrary connected
smooth real submanifolds M ⊂ Cn. At every a ∈ M then the tangent
space to M is an IR-linear subspace TaM ⊂ Cn and for every smooth
f : M → Cm the differential at a is an IR-linear map dfa : TaM → Cm. It
is obvious that a necessary condition for f being locally the restriction of
a holomorphic Cm-valued map, defined in an open neighbourhood of a ∈
? e-mail: kaup@uni-tuebingen.de
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M with respect to Cn, is that the restriction of dfa to the holomorphic
tangent space

(1.1) HaM := TaM ∩ iTaM

(that is the largest complex linear subspace of Cn contained in the real
tangent space TaM) is complex linear. M is called a CR-submanifold
of Cn if the complex dimension of HaM does not depend on a ∈ M .
This dimension is called the CR-dimension, while the real dimension of
TaM/HaM is called the CR-codimension of M . Then the collection of
all HaM gives the holomorphic subbundle HM of the tangent bundle
TM , and multiplication with the imaginary unit i defines a bundle en-
domorphism J of HM with J2 = − id. The smooth sections in TM ,
the smooth vector fields on M , form a real Lie algebra and M satisfies
the integrability condition, that is, for all smooth sections ξ, η in the
subbundle HM also [Jξ, η] + [ξ, Jη] is a section in HM and

(1.2) [Jξ, Jη]− [ξ, η] = J
(
[Jξ, η] + [ξ, Jη]

)
.

The abstract version of a Cauchy-Riemann manifold that we intend
to use here is as follows: A smooth CR-manifold is a triple (M,HM,J),
where M is a connected smooth manifold, HM is a smooth subbundle of
the tangent bundle TM and J is a smooth bundle endomorphism of HM
such that J2 = − id and the integrability condition (1.2) holds. J defines
a complex vector space structure on every holomorphic tangent space
HaM . Instead of (M,HM,J) we simply write M if the corresponding
HM and J are clear. The smooth CR-manifolds form a category in a
natural way: A smooth mapping ϕ : M → M ′ between CR-manifolds
is a CR-mapping, if for every a ∈ M and a′ := ϕ(a) the differential
dϕa : TaM → Ta′M

′ maps the corresponding holomorphic tangent space
HaM complex linearly to Ha′M

′.

An important local invariant at every a of a smooth CR-manifold
M is the (vector-valued) Levi from. We do not need here the full Levi
form, only its kernel KaM ⊂ HaM . In case M = {z ∈ U : ρ(z) = 0}
for a domain U ⊂ Cn and a smooth submersion ρ : U → IRd one way of
defining the kernel is

KaM :=
{
v ∈ HaM :

n∑

j,k=1

vjwk
∂2ρ (a)
∂zj∂zk

= 0 ∈ Cd

for all w ∈ HaM
}
,

which does not depend on the choice of the submersion ρ. In [3], compare
also [16], a complete set of invariants has been given in the real-analytic
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setting that characterizes M near a up to CR-isomorphy provided that
M is Levi nondegenerate at a (that is KM = 0) and in addition is of
hypersurface type (that is, M has CR-codimension 1).

For certain CR-manifolds M we define by induction on k ∈ IN
higher order Levi kernels Kk

aM ⊂ HaM and say that M has constant
degeneracy of order k if the Kk

aM , a ∈ M , form a subbundle KkM of
HM : To start the induction just put

K0
aM := HaM and K−1

a M := TaM ⊗ C/Na

with Na := {x ⊗ 1 − Jx ⊗ i : x ∈ HaM}. Since Na is a complex linear
subspace, K−1

a M inherits a complex structure that we also denote by J .
Embedding TaM into K−1

a M via x 7→ x ⊗ 1modNa, the space K−1
a M

may be thought of as the ‘smallest’ complex linear space containing TaM
as real and HaM as complex linear subspace.
Now suppose as induction step that M has constant degeneracy of order
k ≥ 0 and that Kk

aM ⊂ Kk−1
a M is already defined as complex linear

subspace. Then it can be shown [13] that there is a unique mapping

Lk+1
a : HaM ×Kk

aM → Kk−1
a M/Kk

aM

satisfying

Lk+1
a (ξa, ηa) = [ξ, η]a + J [ξ, Jη]a mod Kk

aM

for all smooth sections ξ and η in HM and KkM respectively, and the
next kernel is defined by

Kk+1
a M := {v ∈ Kk

aM : Lk+1
a (HaM, v) = 0} .

Lk+1
a is conjugate linear in the second and, as a consequence of the

integrability condition (1.1), complex linear in the first variable. In
particular, Kk+1

a M is a complex linear subspace of Kk
aM . Also, L1

a is
(up to a non-zero constant factor) the usual Levi form at a ∈ M and
K1

aM = KaM .

We say that the CR-manifold M has constant degeneracy if it
has constant degeneracy of any order in the above sense. For instance,
M has this property, if for every pair of points a, a′ ∈ M there exist
open neighbourhoods U,U ′ of a, a′ together with a CR-diffeomorphism
ϕ : U → U ′ satisfying ϕ(a) = a′. In this note we are mainly interested
in manifolds of this type.

A CR-manifold M of constant degeneracy is called finitely non-
degenerate if KkM = 0 for some k and is called k-nondegenerate if
k ≥ 1 is minimal with respect to this property (for the definition of
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k-nondegeneracy without the assumption of ‘constant degeneracy’ com-
pare e.g. [1]). In case M is finitely non-degenerate there cannot exist
a domain N ⊂ M that is CR-isomorphic to a direct product N ′ × C
with a CR-manifold N ′. It is clear that Levi nondegenerate is the same
as 1-nondegenerate. In case k ≥ 2 the minimal dimension for an every-
where k-nondegenerate CR-manifold is 2k + 1. A well studied example
of a homogeneous 2-nondegenerate CR-manifold in the minimal possible
dimension 5 is the tube

(1.3) M := {z ∈ C3 : (Re z1)2 + (Re z2)2 = (Re z3)2, (Re z3) > 0}

over the future light cone in 3-dimensional space time, compare [7], [9],
[10], that will play a prominent role below.

The CR-manifoldM is called minimal if every smooth submanifold
N ⊂ M with HaM ⊂ TaN for all a ∈ N is open in M . In case M is
minimal in this sense there cannot exist a domain N ⊂ M that is CR-
isomorphic to a direct product N ′ × IR with a CR-submanifold N ′.

2. The analytic category

From now on we will only consider real-analytic CR-manifolds
(M,HM,J), that is, M is a real-analytic manifold, HM ⊂ TM is a real-
analytic subbundle and also J is real-analytic. Also these CR-manifolds
form a category with respect to real-analytic CR-mappings. In particu-
lar, we now call two such manifolds M and M ′ CR-equivalent if there
exists a CR-diffeomorphism M → M ′ that is real-analytic in both di-
rections. It is well known that every (real-analytic) CR-manifold M can
be realized locally as a real-analytic CR-submanifold of some Cn.

By Aut(M) we denote the group of all (real-analytic) CR-automor-
phisms of M . In case Aut(M) acts transitively on M the CR-manifold M
is called homogeneous. Vector fields on M are just the sections ξ in TM
over M – for every a ∈ M we write ξa instead of ξ(a) ∈ TaM . A real-
analytic vector field on M is called an infinitesimal CR-transformation if
the corresponding local flow consists of local CR-isomorphisms. Denote
by hol(M) the space of all infinitesimal CR-transformations onM , which
is a real Lie algebra with respect to the usual bracket. It is known,
compare e.g. [1], that a vector field ξ on M is contained in hol(M) if
and only if every point of M has an open neighbourhood N that can
be realized as a real-analytic submanifold of a domain U in some Cn in
such a way that ξ|N extends to a holomorphic vector field on U .

Our interest in the following is mainly in the local CR-structure
at arbitrary points a ∈ M , that is, in the CR-manifold germs (M,a).
Denote by hol(M,a) the space of all germs of vector fields in hol(N),
where N ⊂M runs through all open neighbourhoods of a in M . Clearly,

4



also hol(M,a) is a real Lie algebra in an obvious way and there is a
canonical embedding hol(M) ↪→ hol(M,a). In certain cases more can be
said:

2.1 Proposition. Suppose that the CR-manifold M is simply con-
nected and that all Lie algebras hol(M,a), a ∈M , have the same finite
dimension. Then for every a ∈ M the canonical injection hol(M) →
hol(M,a) is an isomorphism of Lie algebras.

Proof. Denote by π : H → M the sheaf whose stalks π−1(a) are the
Lie algebras hol(M,a). For every domain N ⊂ M then hol(N) can be
identified with the space of continuous sections over N in H . Every a ∈
M has an open neighbourhood N in M such that hol(N) → hol(M, c)
is an isomorphism for every c ∈ N . This implies that the connected
components of H are coverings of M and hence are single sheeted since
M is simply connected.

The CR-manifold M is called locally homogeneous if for every
a, a′ ∈ M there exist open neighbourhoods N,N ′ in M together with
a CR-isomorphism N → N ′ sending a to a′. By [17] this is equiva-
lent to the condition: To every a ∈ M there exists a Lie subalgebra
g ⊂ hol(M,a) of finite dimension such that the canonical evaluation
map g → TaM , ξ 7→ ξa, is surjective. Every locally homogeneous CR-
manifold M has constant degeneracy in the sense of the preceding sec-
tion. In particular, all complex subbundles KkM ⊂ TM , k ∈ IN, are
defined.

It is known that for every locally homogeneous CR-manifold M
the condition dim hol(M,a) < ∞ for some a ∈ M (and hence for all
a ∈M) is equivalent to M being finitely nondegenerate and minimal (as
defined in the preceding section).

For homogeneous Levi nondegenerate manifolds large classes of
examples are known: One of the best studied examples is for every n ≥ 2
the euclidian hypersphere

(2.2) S := {z ∈ Cn : (z|z) =
∑

zkzk = 1} ,

the boundary of the euclidian ball B := {z ∈ Cn : (z|z) < 1}. Every
g ∈ Aut(S) extends to a biholomorphic automorphism of the ball B
and thus gives a group isomorphism Aut(S) ∼= Aut(B) ∼= PSU(n, 1). In
particular, S is homogeneous (clearly, the subgroup SU(n) ⊂ GL(n,C)
is already transitive on S). For every a ∈ S the holomorphic tangent
space HaS = a⊥ is the (complex) orthogonal complement of the vector
a. In particular, a 7→ HaS, defines an ‘anti-CR map’ from S to the
Grassmannian of all complex hyperplanes in Cn.

Further classes of examples can be found, for instance, in [12].
One of these is as follows: Fix arbitrary integers p ≥ q ≥ 1 and let
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E := Cp×q be the space of all complex p×q-matrices. Then the compact
group K := SU(p) × SU(q) acts on E by z 7→ uzv∗, (u, v) ∈ K. For
every a ∈ E the orbit M := K(a) is a Levi nondegenerate minimal
homogeneous CR-submanifold of E. In case M ′ = K ′(a′) for a′ ∈ Cp′×q′

and K ′ := SU(p′)×SU(q′) with p′ ≥ q′ ≥ 1 is another orbit of this type,
the manifolds M and M ′ are locally CR-equivalent if and only if p′ = p,
q′ = q and one of the following alternatives holds.
(1) a invertible and hence p = q: M ′ = tM or M ′ = tM−1 for some
t ∈ C∗ and M−1 := {z−1 : z ∈M} ⊂ GL(p,C).
(2) a not invertible: M ′ = tM for some t > 0.

3. Tube manifolds

In the following let E be a complex vector space of finite dimension.
Fix a conjugation z 7→ z on E and denote by V := {z ∈ E : z = z} the
corresponding real form. Then E = V ⊕ iV and for every (connected
immersed) real-analytic submanifold F ⊂ V the corresponding tube
M := F + iV is a CR-submanifold of E. Indeed, the abelian group
A of all translations z 7→ z + iv, v ∈ V , satisfies M = A(F ) and for
every a ∈ F ⊂ M we have HaM = TaF ⊕ iTaF . More generally, since
the conjugation leaves M invariant, all kernels Kk

aM (if defined) are
also invariant under the conjugation and hence are of the form Kk

aM =
Kk

aF ⊕ iKk
aF for Kk

aF := Kk
aM ∩ TaF .

For a certain class of tube manifolds M = F + iV a simple method
for the actual computation of the kernels Kk

aF has been given in [10]:
Let A be a linear space of affine mappings ξ : V → V such that

(i) ξx := ξ(x) ∈ TxF for all ξ ∈ A and all x ∈ F ,

(ii) the mapping A → TaF , ξ 7→ ξa, is a linear isomorphism.

Then the CR-submanifold M = F + iV is locally homogeneous and the
kernels Kk

aF are recursively given by

K0
aF = TaF and

Kk+1
a F = {v ∈ Kk

aF : ξlin(v) ∈ Kk
aF for all ξ ∈ A} ,

where ξlin = ξ − ξ0 is the linear part of ξ.

Tubes form a very special class of CR-manifolds: Indeed, for every
tube M and every a ∈ M the Lie algebra hol(M,a) must contain an
abelian subalgebra of dimension
(∗) n := CR-dimM + CR-codimM .
As an example consider for fixed p ≥ q ≥ 1 and a ∈ E := Cp×q nonin-
vertible the submanifold M := {uav : u ∈ SU(p), v ∈ SU(q)} of E, that
is, the case (2) at the end of Section 2. Then M is homogeneous, Levi
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nondegenerate, minimal and n = r(p+q−r) for the number n defined by
the formula (∗), where r is the rank of the matrix a (compare [12] for de-
tails). Furthermore, M is of hypersurface type if and only if r = 1. In M
there exists a unique (rectangular) diagonal matrix d with non-negative
real diagonal entries d11 ≥ d22 ≥ · · · ≥ dqq. In case q > 1 and d11 6= dqq

the Lie algebra hol(M,a) is isomorphic to u(p)× su(q) and hence does
not contain any abelian Lie subalgebra of dimension p + q. Therefore,
in this case the germ (M,a) has no local tube realization. On the other
hand, it can be shown that (M,a) always has a tube realization if r = 1.
Notice that among these cases the sphere S from (2.2) occurs for p = n,
q = 1, d11 = 1 and that S is locally CR-equivalent, for instance, to the
tube with base

F := {x ∈ IRn :
∑

e2xk = 1} .
Indeed, the locally biholomorphic map z 7→ (ez1 , ez2 , . . . , ezn) realizes
F + iIRn as universal cover of S ∩ (C∗)n.

In [4] all closed tube hypersurfaces in Cn have been classified up
to affine equivalence that are locally CR-equivalent to the sphere (2.2).
In [11] the same has been done for the pseudo-sphere

{z ∈ Cn :
∑

k<n

zkzk = 1 + znzn}

of signature (n − 1, 1). In both cases there is only a finite number of
equivalence classes. These were obtained by solving a certain system of
second order differential equations coming from [3]. In particular, this
method does not extend to the Levi degenerate case nor to higher CR-
codimensions.

4. Examples of 2- 3- 4-nondegenerate manifolds

In the following we discuss some of the examples presented in sec-
tion 5 of [10]: For fixed integers k ∈ {2, 3, 4} and c ≥ 1 let V ⊂ IR[u, v]
be the subspace of all homogeneous polynomials of degree m := k+c−1.
We consider every p ∈ V as polynomial function on IR2 and also on C2

if convenient. By G ⊂ GL(V ) we denote the subgroup of all transforma-
tions p 7→ ± p ◦ g with g ∈ GL(2, IR). Then G acts irreducibly on V and,
as a consequence, for every non-zero G-orbit F in V the corresponding
tube manifold M = F + iV is a minimal (not necessarily connected)
CR-submanifold of E := V ⊕ iV . Note that G always has two connected
components and is isomorphic to GL(2, IR) if m is odd. The connected
identity component G0 of G consists of all transformations p 7→ t·(p ◦ g)
with t > 0 and g ∈ SL(2, IR).

By definition, the function p = p(u, v) ∈ V vanishes of order ≥ d ∈
IN at (u0 : v0) ∈ IP1(C) if all partial derivatives up to degree d−1 vanish
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at (u0, v0) ∈ C2. Counted with multiplicities, every p 6= 0 has exactly
m zeroes. The group GL(2, IR) acts by linear fractional transformations
on IP1(C) with two orbits, IP1(IR) and its complement. For every g ∈
GL(2, IR) the zeroes of p and ± p ◦ g differ by an application of g on
IP1(C).

Now consider the set P of all p 6= 0 in V with the following prop-
erty: All zeroes of p are in IP1(IR), one of these has order m − (k − 2)
while the remaining (k − 2) zeroes have order 1. From the above it is
clear that P for our particular choices of k is a G-orbit. Denote by F
the connected component of P that contains the polynomial

p :=




vm k = 2
uvm−1 k = 3
(u2 − v2)vm−2 k = 4 .

Then the connected identity component G0 of G acts transitively on F .
With the criterion in Section 3 it is easily seen that

Kr
pF =

k−1−r∑

j=0

IRujvm−j for all r ≥ 0 .

In particular, the tube manifold M := F + iV is a k-nondegenerate
homogeneous CR-submanifold of E = V ⊕ iV with CR-dimension k and
CR-codimension c. For better distinction we also write F k,c := F and
Mk,c := M in the following.

The CR-manifolds Mk,c from Section 5 in [10] coincide with our
Mk,c for k = 2, 3. The 4-nondegenerate homogeneous CR-submanifold
M4,c is the tube over the G0-orbit F4,c defined as follows: It is a con-
nected component of the set Q of all q 6= 0 in V having a zero of order
(m− 2) in IP1(IR) and 2 zeros outside IP1(IR). A polynomial in Q is, for
instance, (u2 + v2)vm−2.

Let us identify IRm+1 and V via

(4.1) (x0, x1, . . . , xm) ∼=
m∑

j=0

xj

(
m

j

)
ujvm−j .

Then F 2,c, F 3,c, F 4,c, F4,c are respectively the G0-orbits of the points
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), (−1, 0, 1, 0, . . . , 0), (1, 0, 1, 0, . . . , 0).

Notice that F 2,c ∪−F 2,c is the unique G-orbit that is closed in V \ {0}.
It is also the unique 2-dimensional G-orbit in V and consists of all p ∈ V
that are a power of a non-zero linear form on V . The F 2,c will occur
again in Section 5.
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Denote for every x = (x0, . . . , xm) by D(x) the resultant of the
two polynomials m−1∂f

/
∂u and m−1∂f

/
∂v, where f ∈ V corresponds

to x by (4.1). Then D is a homogeneous polynomial of degree 2m − 2
in x and D(x) = 0 if and only if the corresponding polynomial f has a
multiple zero in IP1(C). In particular, every F of the form F k,c or F4,c

is contained in the hypersurface S := {x ∈ IRm+1 : D(x) = 0}. In case
c = 1 the orbit F is open in the nonsingular part of S and we have the
following explicit formula for D :

Case k = 2: Here D(x) = x0x2 − x2
1. As a consequence,

F 2,1 = {(x0, x1, x2) ∈ IR3 : D(x) = 0 < x0 + x2}
and thus M2,1 coincides with the future light cone tube M in (1.3) up
to a complex linear isomorphism.

Case k = 3: Here D(x) = x2
0x

2
3−3x2

1x
2
2−6x0x1x2x3+4x3

1x3+4x0x
3
2 (the

formula presented in Example 1.22 of [15] is not correct). Furthermore,
D(x) = 0 if and only if the orbit G(x) has dimension < 4, see [10].
Therefore F 3,1 consists of all x ∈ IR4 for which the matrix




0 x1 2x2 3x3

3x1 2x2 x3 0
0 x0 2x1 3x2

3x0 2x1 x2 0




has rank 3. In particular, F 3,1 is the nonsingular part of S.

Case k = 4: Here, compare [15] p. 29, D(x) = g2(x)3 − 27g3(x)2 with

g2(x) : = x0x4 − 4x1x3 + 3x2
2 and

g3(x) : = x0x2x4 − x0x
2
3 − x2

1x4 + 2x1x2x3 − x3
2 .

The polynomials g2, g3 are invariant under the action of the group
SL(2, IR) on V = IR5 but not under G0. This allows to describe the orbit
structure of G0 from the CR-viewpoint in more detail: For 0 ≤ j ≤ 4 let
S[j] be the union of all G0-orbits in S of dimension j, that is, the set of
all x ∈ S for which the matrix




0 x1 2x2 3x3 4x4

4x1 3x2 2x3 x4 0
0 x0 2x1 3x2 4x3

4x0 3x1 2x2 x3 0




has rank j (for every x /∈ S the orbit G0(x) has dimension 4). A further
decomposition of S is given by the three G0-invariant subsets

S± := {x ∈ S : ±g3(x) > 0} , S0 := {x ∈ S : g3(x) = 0}
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satisfying S− = −S+. In a total, S consists of 13 G0-orbits, more pre-
cisely:

(i) S+ \ S[3] = S+ ∩ S[4] = F 4,1 ∪ F4,1

(ii) S+ ∩ S[3] = G0(0, 0, 1, 0, 0) ∪ −G0(1, 0, 2, 0, 1)

(iii) S0 ∩ S[4] = S0 ∩ S[1] = ∅
(iv) S0 ∩ S[3] = F 3,2 ∪ −F 3,2

(v) S0 ∩ S[2] = F 2,3 ∪ −F 2,3

with 2-nondegenerate orbits in (ii). The nonsingular part of S is

±(
F 4,1 ∪ F4,1 ∪ −G0(1, 0, 2, 0, 1)

)

and F 4,1 ∩ F4,1 = G0(0, 0, 1, 0, 0) ∪ F 2,3 ∪ {0}.

The case k = 3, c = 1 gives some affinely homogeneous tube
domains in C4: As before, (x0, x1, x2, x3) = x0v

3+3x1uv
2+3x2u

2v+x3u
3

identifies IR4 and V . The subgroup G ⊂ GL(V ) = GL(4, IR) is isomorphic
to GL(2, IR) and has precisely two open orbits in IR4 = V , namely

Ω± := {x ∈ IR4 : ±D(x) > 0} .

As subset of V then Ω− consists of all polynomials p 6= 0 having three dis-
tinct zeroes in IP1(IR) while Ω+ consists of all p 6= 0 with two zeroes out-
side IP1(IR). This shows that every Ω± is connected andD± := Ω±+ iIR4

is an affinely homogeneous tube domain in C4. From Ω± = −Ω± we
see that the convex hull of Ω± contains the origin and hence coincides
with IR4. This implies that every holomorphic function on D± has a
holomorphic extension to C4. In particular, every bounded holomorphic
function on D± is constant. Since D(x) is invariant under the action of
SL(2, IR) on V = IR4 the SL(2, IR)-orbits in Ω± are the hypersurfaces
Sα := {x ∈ IR4 : D(x) = α} with α ∈ IR±. With the criterion in Section
3 it is easily seen that all Sα, α 6= 0, are Levi nondegenerate.

So far we do not have any example of a locally homogeneous CR-
manifold that is k-nondegenerate with k ≥ 5.

5. Conical manifolds of CR-dimension 2

In this section we discuss linear homogeneous cones F of dimension
2 in a real vector space V of dimension n ≥ 3. For every such F the
corresponding tube M := F + iV is a Levi degenerate homogeneous CR-
submanifold of E := V ⊕ iV with CR-dimension 2 and CR-codimension
(n−2). In case F is contained in a hyperplane W ⊂ V the manifold M is
CR-equivalent to the direct product (F + iW )× IR. We therefore always
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assume in the following that F is not contained in any hyperplane of V .
Then M is automatically minimal and 2-nondegenerate as CR-manifold,
compare [10]. In particular, the Lie algebra hol(M,a) then has finite
dimension for every a ∈M .

In [10] all M of the above type have been classified up to local
CR-equivalence and all hol(M,a) have been explicitly determined. For
a description we recall some elementary facts: a ∈ V is called a cyclic
vector of the endomorphism ϕ ∈ End(V ) if the powers ϕk(a), k ∈ IN,
span the vector space V . By Cyc(V ) ⊂ End(V ) we denote the subset of all
cyclic endomorphisms, that is, of all ϕ having a cyclic vector. Every cyclic
ϕ is uniquely determined up to conjugation in Cyc(V ) by the (unordered)
sequence α1, . . . , αn of all its characteristic roots in C (more precisely the
roots of the characteristic polynomial of ϕ with mulitplicities counted).
We say that α1, . . . , αn form an arithmetic progression if, after a suitable
permutation, the differences (αk+1 − αk), 1 ≤ k < n, do not depend on
k. In case ϕ has trace 0 this is equivalent to ϕ ∈ ρ(sl(2, IR)) where
ρ : sl(2, IR) → End(V ) is the (essentially) unique irreducible Lie algebra
representation.

To every ϕ ∈ Cyc(V ) we associate a linearly homogeneous surface
F = Fϕ in V as follows: For the abelian Lie subalgebra h := hϕ :=
IR id⊕IRϕ ⊂ End(V ) consider the subgroup H := exp(h) ⊂ GL(V ).
Then a ∈ V is cyclic for ϕ if and only if the orbit H(a) is not contained
in a hyperplane of V and any two cyclic orbits H(a), H(a′) differ by
some g ∈ GL(V ). Therefore, if we fix a cyclic vector a ∈ V and put
Fϕ := H(a), the CR-structure on the tube Mϕ := Fϕ + iV does not
depend on the choice of the cyclic vector a ∈ V . Also, this structure only
depends on the characteristic roots of ϕ counted with multiplicities.

The case where α1, . . . , αn form an arithmetic progression: Then there
exists a faithful irreducible representation ρ : gl(2, IR) → End(V ) with
ϕ ∈ ρ(gl(2, IR)) such that every ψ ∈ ρ(gl(2, IR)), considered as vector
field on V , is tangent to Fϕ ⊂ V . This means that Fϕ is locally linearly
equivalent to F 2,n−2 as considered in Section 4. It can be shown that
for every a ∈Mϕ

hol(Mϕ, a) ∼=
{

so(2, 3) n = 3
gl(2, IR)nρV otherwise.

The case where α1, . . . , αn do not form an arithmetic progression:
Without loss of generality we may always assume for Mϕ that the cyclic
endomorphism ϕ is tracefree, that is α1 + . . . + αn = 0. Then, if ϕ′ is
another tracefree cyclic endomorphism with eigenvalues α′1, . . . , α

′
n, the

following conditions are equivalent: (compare Prop. 7.6 in [10])

(i) Mϕ and Mϕ′ are locally (globally) CR-equivalent.

(ii) Fϕ and Fϕ′ are locally (globally) linearly equivalent.
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(iii) Modulo a suitable permutation of the indices in one of the eigen-
value strings, α′k = tαk holds for some t ∈ IR∗ and all 1 ≤ k ≤ n.

(iv) hol(Mϕ) and hol(Mϕ′) are isomorphic as Lie algebras.

Furthermore, hol(Mϕ, a) ∼= hol(Mϕ) ∼= hϕnV holds for all a ∈Mϕ.

Notice that conversely every linearly homogeneous connected cone
F ⊂ V not contained in a hyperplane of V is locally linearly equivalent
to some Mϕ with ϕ ∈ Cyc(V ) tracefree.

6. A nonconical manifold of CR-dimension 2

As in Section 4 let V ⊂ IR[u, v] be the subspace of all homogeneous
polynomials of degree m ≥ 3 and denote by Γ ⊂ GL(2, IR) the subgroup
of all transformations (u, v) 7→ (ru, tu+ v) with t ∈ IR and r > 0. Then
Γ acts on V by p 7→ p ◦ g−1 and leaves the affine hyperplane

W := vm +
m∑

k=1

IR vkvm−k

invariant. Setting (x1, x2, . . . , xm) = vm +
∑m

k=1 xk

(
m
k

)
vkvm−k identifies

IRm with W and Γ becomes a group Σ of affine transformations on IRm.
The orbit

C := Σ(0) = {(t, t2, . . . , tm) ∈ IRm : t ∈ IR}
is the twisted m-ic. Its development S :=

⋃
c∈C(c + TcC) is divided by

C into the two linearly equivalent orbits Σ(±a), where a := (1, 0, . . . , 0).
Then with γ(t) := (t, t2, . . . , tm)

F := Σ(a) = {γ(t) + rγ′(t) : t ∈ IR, r > 0}

is an affinely homogeneous surface in IRm (compare [6], p. 45 for the
special case m = 3). The corresponding tube M := F + iIRm is a homo-
geneous minimal 2-nondegenerate CR-manifold of CR-dimension 2 not
locally CR-equivalent to any of the examples in the previous section. For
every a ∈M the Lie algebra hol(M,a) has dimension m+ 2.

7. The classification in dimension 5

Our examples so far give the following affinely homogeneous 2-
nondegenerate tube manifolds M := F + iIR3 ⊂ C3 of dimension 5,
where r, t run over all real numbers with r > 0 :

(i) F = { r (cos t, sin t, 1) ∈ IR3} the future light cone,

(ii) F = { r (cos t, sin t, eωt) ∈ IR3} with ω > 0 arbitrary,
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(iii) F = { r (1, t, et) ∈ IR3},
(iv) F = { r (1, et, eθt) ∈ IR3} with θ > 2 arbitrary,

(v) F = { γ(t) + rγ′(t) ∈ IR3}, where γ(t) := (t, t2, t3) parameterizes
the twisted cubic and γ′(t) = (1, 2t, 3t2).

In case (i) M ∼= M, see (1.3), and hol(M) ∼= hol(M,a) ∼= so(2, 3) is
semisimple with dimension 10 for all a ∈ M . In all other cases M is
simply connected and hol(M) ∼= hol(M,a) is a solvable Lie algebra of
dimension 5.

In [6], compare also [5], all affinely homogeneous surfaces in IR3

have been classified up to local affine equivalence. Among the equivalence
classes the surfaces F in (i) - (v) represent precisely those classes that
can be given in a neighbourhood U of the origin in IR3 as

{(x, y, z) ∈ U : z = f(x, y)}

with f a convergent power series of the form

f(x, y) = x2 + x2y + higher order terms.

The surfaces F above are pairwise locally affinely inequivalent and even
give pairwise locally CR-inequivalent CR-manifolds (since the Lie alge-
bras hol(M,a) are pairwise non-isomorphic). Note that this property
is not evident a priori: In [11] two CR-equivalent affinely homogeneous
tube manifolds in C3 are given that are locally affinely inequivalent.
These examples are Levi nondegenerate and hence not 2-nondegenerate
as in our situation. The main result of [10] now states:

7.1 Theorem. Every locally homogeneous 2-nondegenerate CR-mani-
fold of dimension 5 is locally CR-equivalent to a tube M = F + iIR3

with F a unique surface from the list in (i) – (v) above.

Since every locally homogeneous Levi degenerate CR-manifold M
of dimension 5 is either 2-nondegenerate or locally of the form M ′ ×C ,
Cartan’s classification [2] in dimension 3 together with Theorem 7.1 also
gives a local classification of all locally homogeneous Levi degenerate
CR-manifolds in dimension 5. For a local classification of a certain class
of Levi nondegenerate hypersurfaces in C3 compare [14].

The tube manifolds M = F + iIR3 with F from (i) - (v) are all
non-closed hypersurfaces in C3 and we may ask: Do there exist closed hy-
persurfaces N ⊂ C3 that are locally homogeneous and 2-nondegenerate?
At least tube submanifolds N of this type cannot exist that are locally
CR-equivalent to one of the manifolds M = F + iIR3 with F from (ii) -
(v). This follows from the fact that for those M in hol(M,a) there is a
unique abelian subalgebra of dimension 3.
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