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1. CR-manifolds

Assume that F is a complex vector space of finite dimension and M C FE is a (locally-closed) con-
nected real-analytic submanifold. Then for every a € M the tangent space 1, M is an R-linear subspace
of F'and H,M := T, M NiT, M is the maximal complex linear subspace of E contained in T,, M. The
submanifold M is called a CR-submanifold of E if the complex dimension of H,M does not depend on
a € M. This dimension is called the CR-dimension of M and H,M is called the holomorphic tangent
space at a, compare [2] as general reference for CR-manifolds. Also, the real dimension of T, M /H, M
is called the CR-codimension of M. For a further real-analytic CR-submanifold M’ of a complex vector
space E’ a smooth mapping ¢ : M — M’ is called CR if the differential dy, : T,M — T, M’ maps the
corresponding holomorphic tangent spaces in a complex linear way to each other. In terms of differential
equations this just means that ¢ as E-valued mapping satisfies the Cauchy-Riemann partial differential
equations at every point of M in the direction of the holomorphic tangent space. In particular, in case M
is a complex analytic submanifold of £, then always H, M = T, M and ‘CR’ just means ‘holomorphic’.

The notion of a CR-function and hence of a CR-mapping can also be reformulated in terms of distri-
butions and then also applies to not necessarily smooth mappings. In particular, due to the approximation
theorem of Baouendi-Treves [1]), a continuous map ¢ : M — M’ is CR if and only if it is locally the
uniform limit of a sequence of smooth CR-mappings. It is a specialty of the Cauchy-Riemann differential
equations that compositions of CR-mappings are also CR and, in particular, that the space C(M) of all
continuous CR-functions f : M — C is a complex algebra with identity.

Typical questions in this context are for instance: When are two CR-manifolds M, M’ CR-isomor-
phic, and if so, what is the space of all CR-isomorphisms M — M’. Furthermore, what are the subsets
A C E with M C A such that every continuous CR-function on )M has a unique continuous extension
to A that is ‘holomorphic’ in a suitable sense. Also, what is the spectrum (maximal ideal space) of the
algebra C.(M)?

The following is a well-known example: Let E = C™ and (z|w) = ) z;w, the standard hermitian
form on E. Then the unit sphere S := {z € E : (z|z) = 1} is a CR-submanifold on which the unitary
group U(n) acts transitively by CR-transformations. For every a € S the holomorphic tangent space at a
is H,S ={z € E : (z|la) =0} and T, = Ria & H,S.

2. Formally real Jordan algebras and associated CR-manifolds

A real vector space V' together with a symmetric bilinear product (x,y) — x o y is called a (real)
Jordan algebra, if
z?o(woy)=wo(z’oy)
holds for all 2,y € V, where 2? := zox. If we denote by L,, the multiplication operator y — x07, then the
above equation just means that L, and L,» commute for every x € V. Because of 2zoy = (z+y)*> — 2> —?
the Jordan product is uniquely determined by the squaring map z + 2> on V.
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The real Jordan algebra V' # 0 of finite dimension is called formally real [3] or euclidian [5] if
2% + y* = 0 always implies z = y = 0, or equivalently, if the trace form (x,y) := tr(L,L,) on V is
positive definite. Assume in the following that V' is formally real. Then V' always has an identity e and
there exists an integer > 1 (called the rank of V') such that every a € V is an R-linear combination

a=Ae + e +...+ e,

where the ey, ..., e, form an orthogonal family of non-zero idempotents in V' (i.e. e; o ey, = §;,€x) with
e =e; + ...+ e,. The coefficients \; are uniquely determined up to order and are called the eigenvalues
of a.

For all integers p > ¢ > 0 with 0 < p + ¢ < r we denote by C), , the cone of all a € V having
precisely p positive and ¢ negative eigenvalues. Then C), , is open in V' if and only if p + ¢ = 7. Of a
particular interest is the positive cone Q := (). o, which is open, convex and coincides with the interior of
the closed cone {#% : z € V'}. The linear group

G =GLQ) :={g € GL(V): g(Q) = Q}

is a reductive Lie group and its connected identity component G° acts transitively on every connected com-
ponent of C), 4. In particular, every cone C), , is a locally linearly homogeneous real-analytic submanifold
of V. Furthermore, the isotropy subgroup

{geG:ge)=¢e} ={g € GL(V): g(xoy) =g(x)og(y) forall z,y € V} =: Aut(V)

at the identity e is a maximal compact subgroup of G.

Now denote by F := V @ ¢V the complexification of V. The complex bilinear extension of the
Jordan product from V' makes £ to a complex Jordan algebra also with identity e. Denote by

D:=QxV C E

the tube domain over Q (up to a factor ¢ a generalized upper halfplane). Then the group G'ixV acts tran-
sitively by affine transformations on D and z + (z — e) o (z + )~ ! defines a biholomorphic mapping
from D to a bounded circular convex domain in F. Therefore D is a symmetric tube domain (a bounded
symmetric domain of tube type), compare [7], [11] for details. On the other hand, every symmetric tube
domain arises from a uniquely determined formally real Jordan algebra in the above way.

V is the direct sum of all its minimal ideals, we may therefore assume without loss of generality in
the following that the formally real Jordan algebra V' is simple. Then C), 4 is connected and hence an orbit
of the group G = GL(£2). Now let

My, =CpqxiV C FE

be the tube manifold over C), ;. Then the group Gx V' acts transitively on M, , by affine transformations
and M, , is a homogeneous CR-submanifold of £. Some of the results obtained in [10] can be stated
as follows: Suppose that V"’ is another simple formally real Jordan algebra of rank " and p’ > ¢’ > 0
are integers with 0 < p’ + ¢’ < r’. Then the tube manifolds M,, ;, and M}, ., are CR-isomorphic if and
only if the Jordan algebras V, V' are isomorphic and p = p’ as well as ¢ = ¢’ holds. Incase p + ¢ < r

the tube manifolds M), , and M]’),’ o are already locally CR-equivalent if and only if they are globally
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CR-equivalent. Also in case p + ¢ < r every continuous CR-function on M, , has a unique continuous
extension to the convex hull
~ E q>0
My = {

UmZp Mm,O q=0

of M, , that is holomorphic on the interior (compare also Proposition 5.2 in [6] for the last statement).

2.1 Example. Let H be a real Hilbert space of finite dimension n > 2, that is, a real vector space together
with a positive definite symmetric bilinear form (x,y) — (x|y) and corresponding norm ||z|| = +/(z|x).
Then V := R & H is a simple formally real Jordan algebra of rank 2 with respect to (s, x) o (¢,y) :=
(st+(zx|y), sy+tx). The positive cone is Q = {(s,z) € V : s > ||z||}, the future cone in n+1-dimensional
space time. Its smooth boundary part is the future light cone C o = {(s,z) € V : s = ||z| > 0}.

2.2 Example. Let K be one of the fields R or C and H,.(K) := {z € K™ : x = z*} the R-linear space
of all hermitian r X r-matrices over K. Then V' := H,.(K) is a simple formally real Jordan algebra of rank
r with respect to = o y := (xy + yx)/2. The notion of eigenvalue and inverse coincides with the usual one
for matrices. In particular, Q is the open cone of positive definite matrices.

Example 2.2 can be extended by taking H,(IH) for the skew-field H of quaternions and also by
'H3(O) for the division algebra O of octonions. Together with these extensions the above examples give a
complete list of all simple formally real Jodan algebras.

3. Hermitian Jordan triple systems

For the next bunch of CR-manifolds let us recall the classical singular value decomposition of
rectangular matrices: Fix integers n > r > 1 and let £ := C"™*" be the space of all complex 7 X n-matrices.
Then to every a € F there exist unitary matrices © € U(r) and v € U(n) such that d := uav € Fisa
real diagonal matrix with diagonal entries dy; > dyp > ... > d,. > 0, called the singular values of a.
In particular, for every a # 0 the subset S C F of all matrices having the same singular values as a is a
generalization of the euclidian spheres in C™ (which occur for r = 1).

A singular value decomposition exists in every positive hermitian Jordan triple system. This is a
complex vector space E of finite dimension together with a map (called Jordan triple product)

ExExFE—E, (x,y, 2) — {vyz},

that satisfies the following properties, compare [11]:

(i) {xyz} is symmetric complex bilinear in the outer variables x, z and conjugate linear in the inner
variable y,

(i) {ab{zyz}} = {{abx}yz} — {z{bay}z} + {zy{abz}} forall a,b,x,y,z € E,
(iii) {zzz} = Az impliesz =0or X € eR forallz € E and \ € C.

Examples are for instance every E = C™" with {zyz} = (xy*z + zy*x)/2, but also the subspaces
{z € €™ : 2/ = z} of all symmetric, as well as {z € C"*" : 2/ = z} of all skew-symmetric n X n-
matrices with the triple product restricted from C™*™. Also, for every formally real Jordan algebra V' the
complexification £ = V & ¢V becomes a positive hermitian Jordan triple system with respect to the triple
product {zyz} = (r o §) 0 2 + (2 0 §) o x — 2% o j, where y — § is the conjugation of E with respect to
the real form V of E.
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Now fix an arbitrary positive hermitian Jordan triple system £ # 0. The element e € F is called a
tripotent if {eee} = e holds. Two tripotents e, ¢ € E are called orthogonal if {eec} = 0, or equivalently,
if {cce} = 0 holds. There exists an integer » > 1, called the rank of E, such that every a € F has a
representation

a=o01ey+o06+...,00€p+

with pairwise orthogonal non-zero tripotents e, 5, . . . , e, and uniquely determined real coefficients

op>0y>...20,>0.

For every k with 1 < k < r the number o(a) := oy, is called the k™ singular value of a. It is known that
for every k the sum a, := 0y + 03 + ...+ 0 : E — R defines a norm on F. In particular, the open unit
ball D := {z € E : 01(2) < 1} with respect to the norm o; = «; is homogeneous under biholomorphic
automorphisms and hence a bounded symmetric domain, compare [7] and [11] for details. On the other
hand, every bounded symmetric domain occurs as the open oy-unit ball of a suitable positive hermitian
Jordan triple system F.

The triple automorphism group

Aut(E) := {g € GL(E) : g{xyz} = {(g2)(gy)(g2)} forall z,y,z}

is compact and coincides with the group of all o|-isometries of E. Clearly, Aut(F) leaves invariant the
mapping o := (o1, ...,0,) : E — R". Denote by K the connected identity component of Aut(F). In case
of E = C™", for instance, K is the group of all transformations z +— uzv with u € U(r) and v € U(n).

Since F is the direct sum of its minimal ideals (the linear subspace I C FE is called an ideal,
if {IEE} + {EIE} C E) we assume in the following that E is simple, or equivalently, that K acts
irreducibly on E. For every s in

A={seR":1=s5>8>...>s5.>0}

the set
Mg :={z€ E:0(2) = s}

is a K-orbit and hence a homogeneous CR-submanifold of £. On the other hand, every non-zero K -orbit
obviously is of the form ¢- M, for uniquely determined ¢ > 0 and s € A and hence is CR-equivalent to
M. The following statements can be found in [9] and [8].

For every a € M The linear convex hull of M is given by
ch(M;) ={z € E: ap(z) < ai(a) forall k}.

If the multiplicative analogon to the norms ¢, is defined as the product py := 0103 - - - 0, then the poly-
nomial convex hull of M can be written as

pch(My) ={z € E : pup(z) < ug(a) forall k}.

For the formualtion of further results on has to distinguish the two cases a € E invertible and ¢ € E
non-invertible. By definition, a is invertible in E if the conjugate linear operator z — {aza} is invertible
on E (in case ' = €™ invertibility of a is just the usual notion for matrices, i.e. » = n and det(a) # 0).
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For simplicity let us assume for the rest of the section that a € M, and hence every element of M is non-
invertible. Then M is a minimal Levi-nondegenerate CR-manifold and is CR-isomorphic to My, t € A,
if and only ¢t = s. Also, every continuous CR-function f on M, has a unique continuous extension to the
polynomial convex hull pch(M,) which is holomorphic in a certain sense (in particular is holomorphic
in the usual sense on the interior of pch(M,) C E if not empty). In fact, pch(M,) can be canonically be
identified with the spectrum of the Banach algebra C.( Mj).
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