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1. CR-manifolds

Assume that E is a complex vector space of finite dimension and M ⊂ E is a (locally-closed) con-
nected real-analytic submanifold. Then for every a ∈ M the tangent space TaM is an �-linear subspace
of E and HaM := TaM ∩ iTaM is the maximal complex linear subspace of E contained in TaM . The
submanifold M is called a CR-submanifold of E if the complex dimension of HaM does not depend on
a ∈ M . This dimension is called the CR-dimension of M and HaM is called the holomorphic tangent
space at a, compare [2] as general reference for CR-manifolds. Also, the real dimension of TaM/HaM

is called the CR-codimension of M . For a further real-analytic CR-submanifold M ′ of a complex vector
space E′ a smooth mapping ϕ : M → M ′ is called CR if the differential dϕa : TaM → TϕaM ′ maps the
corresponding holomorphic tangent spaces in a complex linear way to each other. In terms of differential
equations this just means that ϕ as E-valued mapping satisfies the Cauchy-Riemann partial differential
equations at every point of M in the direction of the holomorphic tangent space. In particular, in case M

is a complex analytic submanifold of E, then always HaM = TaM and ‘CR’ just means ‘holomorphic’.

The notion of a CR-function and hence of a CR-mapping can also be reformulated in terms of distri-
butions and then also applies to not necessarily smooth mappings. In particular, due to the approximation
theorem of Baouendi-Treves [1]), a continuous map ϕ : M → M ′ is CR if and only if it is locally the
uniform limit of a sequence of smooth CR-mappings. It is a specialty of the Cauchy-Riemann differential
equations that compositions of CR-mappings are also CR and, in particular, that the space CCR(M ) of all
continuous CR-functions f : M → � is a complex algebra with identity.

Typical questions in this context are for instance: When are two CR-manifolds M,M ′ CR-isomor-
phic, and if so, what is the space of all CR-isomorphisms M → M ′. Furthermore, what are the subsets
A ⊂ E with M ⊂ A such that every continuous CR-function on M has a unique continuous extension
to A that is ‘holomorphic’ in a suitable sense. Also, what is the spectrum (maximal ideal space) of the
algebra CCR(M )?

The following is a well-known example: Let E = �n and (z|w) =
∑

zjw̄j the standard hermitian
form on E. Then the unit sphere S := {z ∈ E : (z|z) = 1} is a CR-submanifold on which the unitary
group U(n) acts transitively by CR-transformations. For every a ∈ S the holomorphic tangent space at a

is HaS = {z ∈ E : (z|a) = 0} and Ta = �ia⊕HaS.

2. Formally real Jordan algebras and associated CR-manifolds

A real vector space V together with a symmetric bilinear product (x, y) 7→ x ◦ y is called a (real)
Jordan algebra, if

x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y)

holds for all x, y ∈ V , where x2 := x◦x. If we denote by Lx the multiplication operator y 7→ x◦y, then the
above equation just means that Lx and Lx2 commute for every x ∈ V . Because of 2x◦y = (x+y)2−x2−y2

the Jordan product is uniquely determined by the squaring map x 7→ x2 on V .
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The real Jordan algebra V 6= 0 of finite dimension is called formally real [3] or euclidian [5] if
x2 + y2 = 0 always implies x = y = 0, or equivalently, if the trace form 〈x, y〉 := tr(LxLy) on V is
positive definite. Assume in the following that V is formally real. Then V always has an identity e and
there exists an integer r ≥ 1 (called the rank of V ) such that every a ∈ V is an �-linear combination

a = λ1e1 + λ2e2 + . . . + λrer ,

where the e1, . . . , er form an orthogonal family of non-zero idempotents in V (i.e. ej ◦ ek = δjkek) with
e = e1 + . . . + er. The coefficients λj are uniquely determined up to order and are called the eigenvalues
of a.

For all integers p ≥ q ≥ 0 with 0 < p + q ≤ r we denote by Cp,q the cone of all a ∈ V having
precisely p positive and q negative eigenvalues. Then Cp,q is open in V if and only if p + q = r. Of a
particular interest is the positive cone Ω := Cr,0, which is open, convex and coincides with the interior of
the closed cone {x2 : x ∈ V }. The linear group

G = GL(Ω) := {g ∈ GL(V ) : g(Ω) = Ω}

is a reductive Lie group and its connected identity component G0 acts transitively on every connected com-
ponent of Cp,q . In particular, every cone Cp,q is a locally linearly homogeneous real-analytic submanifold
of V . Furthermore, the isotropy subgroup

{g ∈ G : g(e) = e} = {g ∈ GL(V ) : g(x ◦ y) = g(x) ◦ g(y) for all x, y ∈ V } =: Aut(V )

at the identity e is a maximal compact subgroup of G.

Now denote by E := V ⊕ iV the complexification of V . The complex bilinear extension of the
Jordan product from V makes E to a complex Jordan algebra also with identity e. Denote by

D := Ω× iV ⊂ E

the tube domain over Ω (up to a factor i a generalized upper halfplane). Then the group GnV acts tran-
sitively by affine transformations on D and z 7→ (z − e) ◦ (z + e)−1 defines a biholomorphic mapping
from D to a bounded circular convex domain in E. Therefore D is a symmetric tube domain (a bounded
symmetric domain of tube type), compare [7], [11] for details. On the other hand, every symmetric tube
domain arises from a uniquely determined formally real Jordan algebra in the above way.

V is the direct sum of all its minimal ideals, we may therefore assume without loss of generality in
the following that the formally real Jordan algebra V is simple. Then Cp,q is connected and hence an orbit
of the group G = GL(Ω). Now let

Mp,q := Cp,q × iV ⊂ E

be the tube manifold over Cp,q . Then the group GnV acts transitively on Mp,q by affine transformations
and Mp,q is a homogeneous CR-submanifold of E. Some of the results obtained in [10] can be stated
as follows: Suppose that V ′ is another simple formally real Jordan algebra of rank r′ and p′ ≥ q′ ≥ 0
are integers with 0 < p′ + q′ ≤ r′. Then the tube manifolds Mp,q and M ′

p′,q′ are CR-isomorphic if and
only if the Jordan algebras V, V ′ are isomorphic and p = p′ as well as q = q′ holds. In case p + q < r

the tube manifolds Mp,q and M ′
p′,q′ are already locally CR-equivalent if and only if they are globally
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CR-equivalent. Also in case p + q < r every continuous CR-function on Mp,q has a unique continuous
extension to the convex hull

M̂p,q =

{
E q > 0⋃

m≥p Mm,0 q = 0

of Mp,q that is holomorphic on the interior (compare also Proposition 5.2 in [6] for the last statement).

2.1 Example. Let H be a real Hilbert space of finite dimension n ≥ 2, that is, a real vector space together
with a positive definite symmetric bilinear form (x, y) 7→ 〈x|y〉 and corresponding norm ‖x‖ =

√
〈x|x〉.

Then V := � ⊕ H is a simple formally real Jordan algebra of rank 2 with respect to (s, x) ◦ (t, y) :=
(st+〈x|y〉, sy+tx). The positive cone is Ω = {(s, x) ∈ V : s > ‖x‖}, the future cone in n+1-dimensional
space time. Its smooth boundary part is the future light cone C1,0 = {(s, x) ∈ V : s = ‖x‖ > 0}.

2.2 Example. Let � be one of the fields � or � and Hr(�) := {x ∈ �r×r : x = x∗} the �-linear space
of all hermitian r×r-matrices over �. Then V := Hr(�) is a simple formally real Jordan algebra of rank
r with respect to x ◦ y := (xy + yx)/2. The notion of eigenvalue and inverse coincides with the usual one
for matrices. In particular, Ω is the open cone of positive definite matrices.

Example 2.2 can be extended by taking Hr(�) for the skew-field � of quaternions and also by
H3(�) for the division algebra � of octonions. Together with these extensions the above examples give a
complete list of all simple formally real Jodan algebras.

3. Hermitian Jordan triple systems

For the next bunch of CR-manifolds let us recall the classical singular value decomposition of
rectangular matrices: Fix integers n ≥ r ≥ 1 and let E := �r×n be the space of all complex r×n-matrices.
Then to every a ∈ E there exist unitary matrices u ∈ U(r) and v ∈ U(n) such that d := uav ∈ E is a
real diagonal matrix with diagonal entries d11 ≥ d22 ≥ . . . ≥ drr ≥ 0, called the singular values of a.
In particular, for every a 6= 0 the subset S ⊂ E of all matrices having the same singular values as a is a
generalization of the euclidian spheres in �n (which occur for r = 1).

A singular value decomposition exists in every positive hermitian Jordan triple system. This is a
complex vector space E of finite dimension together with a map (called Jordan triple product)

E × E × E → E , (x, y, z) 7→ {xyz},

that satisfies the following properties, compare [11]:

(i) {xyz} is symmetric complex bilinear in the outer variables x, z and conjugate linear in the inner
variable y,

(ii) {ab{xyz}} = {{abx}yz} − {x{bay}z} + {xy{abz}} for all a, b, x, y, z ∈ E,

(iii) {xxx} = λx implies x = 0 or λ ∈ e� for all x ∈ E and λ ∈ �.

Examples are for instance every E = �r×n with {xyz} = (xy∗z + zy∗x)/2, but also the subspaces
{z ∈ �n×n : z′ = z} of all symmetric, as well as {z ∈ �n×n : z′ = z} of all skew-symmetric n×n-
matrices with the triple product restricted from �n×n. Also, for every formally real Jordan algebra V the
complexification E = V ⊕ iV becomes a positive hermitian Jordan triple system with respect to the triple
product {xyz} = (x ◦ ȳ) ◦ z + (z ◦ ȳ) ◦ x − x2 ◦ ȳ, where y 7→ ȳ is the conjugation of E with respect to
the real form V of E.
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Now fix an arbitrary positive hermitian Jordan triple system E 6= 0. The element e ∈ E is called a
tripotent if {eee} = e holds. Two tripotents e, c ∈ E are called orthogonal if {eec} = 0, or equivalently,
if {cce} = 0 holds. There exists an integer r ≥ 1, called the rank of E, such that every a ∈ E has a
representation

a = σ1e1 + σ2e2 + . . . , σrer+

with pairwise orthogonal non-zero tripotents e1, e2, . . . , er and uniquely determined real coefficients

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 .

For every k with 1 ≤ k ≤ r the number σk(a) := σk is called the kth singular value of a. It is known that
for every k the sum αk := σ1 + σ2 + . . . + σr : E → � defines a norm on E. In particular, the open unit
ball D := {z ∈ E : σ1(z) < 1} with respect to the norm σ1 = α1 is homogeneous under biholomorphic
automorphisms and hence a bounded symmetric domain, compare [7] and [11] for details. On the other
hand, every bounded symmetric domain occurs as the open σ1-unit ball of a suitable positive hermitian
Jordan triple system E.

The triple automorphism group

Aut(E) :=
{
g ∈ GL(E) : g{xyz} = {(gx)(gy)(gz)} for all x, y, z

}

is compact and coincides with the group of all σ1-isometries of E. Clearly, Aut(E) leaves invariant the
mapping σ := (σ1, . . . , σr) : E → �r. Denote by K the connected identity component of Aut(E). In case
of E = �r×n, for instance, K is the group of all transformations z 7→ uzv with u ∈ U(r) and v ∈ U(n).

Since E is the direct sum of its minimal ideals (the linear subspace I ⊂ E is called an ideal,
if {IEE} + {EIE} ⊂ E) we assume in the following that E is simple, or equivalently, that K acts
irreducibly on E. For every s in

∆ := {s ∈ �r : 1 = s1 ≥ s2 ≥ . . . ≥ sr ≥ 0}

the set
Ms := {z ∈ E : σ(z) = s}

is a K-orbit and hence a homogeneous CR-submanifold of E. On the other hand, every non-zero K-orbit
obviously is of the form t·Ms for uniquely determined t > 0 and s ∈ ∆ and hence is CR-equivalent to
Ms. The following statements can be found in [9] and [8].

For every a ∈ Ms The linear convex hull of Ms is given by

ch(Ms) = {z ∈ E : αk(z) ≤ αk(a) for all k} .

If the multiplicative analogon to the norms αk is defined as the product µk := σ1σ2 · · ·σk then the poly-
nomial convex hull of Ms can be written as

pch(Ms) = {z ∈ E : µk(z) ≤ µk(a) for all k} .

For the formualtion of further results on has to distinguish the two cases a ∈ E invertible and a ∈ E

non-invertible. By definition, a is invertible in E if the conjugate linear operator z 7→ {aza} is invertible
on E (in case E = �r×n invertibility of a is just the usual notion for matrices, i.e. r = n and det(a) 6= 0).
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For simplicity let us assume for the rest of the section that a ∈ Ms and hence every element of Ms is non-
invertible. Then Ms is a minimal Levi-nondegenerate CR-manifold and is CR-isomorphic to Mt, t ∈ ∆,
if and only t = s. Also, every continuous CR-function f on Ms has a unique continuous extension to the
polynomial convex hull pch(Ms) which is holomorphic in a certain sense (in particular is holomorphic
in the usual sense on the interior of pch(Ms) ⊂ E if not empty). In fact, pch(Ms) can be canonically be
identified with the spectrum of the Banach algebra CCR(Ms).
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