CR-manifolds and Jordan algebras

Wilhelm Kaup

1. CR-manifolds

Assume that E is a complex vector space of finite dimension and $M \subset E$ is a (locally-closed) connected real-analytic submanifold. Then for every $a \in M$ the tangent space $T_{a} M$ is an \mathbb{R}-linear subspace of E and $H_{a} M:=T_{a} M \cap i T_{a} M$ is the maximal complex linear subspace of E contained in $T_{a} M$. The submanifold M is called a CR-submanifold of E if the complex dimension of $H_{a} M$ does not depend on $a \in M$. This dimension is called the CR-dimension of M and $H_{a} M$ is called the holomorphic tangent space at a, compare [2] as general reference for CR-manifolds. Also, the real dimension of $T_{a} M / H_{a} M$ is called the CR-codimension of M. For a further real-analytic CR-submanifold M^{\prime} of a complex vector space E^{\prime} a smooth mapping $\varphi: M \rightarrow M^{\prime}$ is called CR if the differential $d \varphi_{a}: T_{a} M \rightarrow T_{\varphi a} M^{\prime}$ maps the corresponding holomorphic tangent spaces in a complex linear way to each other. In terms of differential equations this just means that φ as E-valued mapping satisfies the Cauchy-Riemann partial differential equations at every point of M in the direction of the holomorphic tangent space. In particular, in case M is a complex analytic submanifold of E, then always $H_{a} M=T_{a} M$ and ' CR ' just means 'holomorphic'.

The notion of a CR-function and hence of a CR-mapping can also be reformulated in terms of distributions and then also applies to not necessarily smooth mappings. In particular, due to the approximation theorem of Baouendi-Treves [1]), a continuous map $\varphi: M \rightarrow M^{\prime}$ is CR if and only if it is locally the uniform limit of a sequence of smooth CR-mappings. It is a specialty of the Cauchy-Riemann differential equations that compositions of CR-mappings are also CR and, in particular, that the space $\mathcal{C}_{\mathrm{CR}}(M)$ of all continuous $\mathbf{C R}$-functions $f: M \rightarrow \mathbb{C}$ is a complex algebra with identity.

Typical questions in this context are for instance: When are two CR-manifolds $M, M^{\prime} \mathrm{CR}$-isomorphic, and if so, what is the space of all CR-isomorphisms $M \rightarrow M^{\prime}$. Furthermore, what are the subsets $A \subset E$ with $M \subset A$ such that every continuous CR-function on M has a unique continuous extension to A that is 'holomorphic' in a suitable sense. Also, what is the spectrum (maximal ideal space) of the algebra $\mathcal{C}_{\text {cr }}(M)$?

The following is a well-known example: Let $E=\mathbb{C}^{n}$ and $(z \mid w)=\sum z_{j} \bar{w}_{j}$ the standard hermitian form on E. Then the unit sphere $S:=\{z \in E:(z \mid z)=1\}$ is a CR-submanifold on which the unitary group $\mathrm{U}(n)$ acts transitively by CR-transformations. For every $a \in S$ the holomorphic tangent space at a is $H_{a} S=\{z \in E:(z \mid a)=0\}$ and $T_{a}=\mathbb{R} i a \oplus H_{a} S$.

2. Formally real Jordan algebras and associated CR-manifolds

A real vector space V together with a symmetric bilinear product $(x, y) \mapsto x \circ y$ is called a (real) Jordan algebra, if

$$
x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right)
$$

holds for all $x, y \in V$, where $x^{2}:=x \circ x$. If we denote by L_{x} the multiplication operator $y \mapsto x \circ y$, then the above equation just means that L_{x} and $L_{x^{2}}$ commute for every $x \in V$. Because of $2 x \circ y=(x+y)^{2}-x^{2}-y^{2}$ the Jordan product is uniquely determined by the squaring map $x \mapsto x^{2}$ on V.

The real Jordan algebra $V \neq 0$ of finite dimension is called formally real [3] or euclidian [5] if $x^{2}+y^{2}=0$ always implies $x=y=0$, or equivalently, if the trace form $\langle x, y\rangle:=\operatorname{tr}\left(L_{x} L_{y}\right)$ on V is positive definite. Assume in the following that V is formally real. Then V always has an identity e and there exists an integer $r \geq 1$ (called the rank of V) such that every $a \in V$ is an \mathbb{R}-linear combination

$$
a=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\ldots+\lambda_{r} e_{r},
$$

where the e_{1}, \ldots, e_{r} form an orthogonal family of non-zero idempotents in V (i.e. $e_{j} \circ e_{k}=\delta_{j k} e_{k}$) with $e=e_{1}+\ldots+e_{r}$. The coefficients λ_{j} are uniquely determined up to order and are called the eigenvalues of a.

For all integers $p \geq q \geq 0$ with $0<p+q \leq r$ we denote by $C_{p, q}$ the cone of all $a \in V$ having precisely p positive and q negative eigenvalues. Then $C_{p, q}$ is open in V if and only if $p+q=r$. Of a particular interest is the positive cone $\Omega:=C_{r, 0}$, which is open, convex and coincides with the interior of the closed cone $\left\{x^{2}: x \in V\right\}$. The linear group

$$
G=\mathrm{GL}(\Omega):=\{g \in \mathrm{GL}(V): g(\Omega)=\Omega\}
$$

is a reductive Lie group and its connected identity component G^{0} acts transitively on every connected component of $C_{p, q}$. In particular, every cone $C_{p, q}$ is a locally linearly homogeneous real-analytic submanifold of V. Furthermore, the isotropy subgroup

$$
\{g \in G: g(e)=e\}=\{g \in \mathrm{GL}(V): g(x \circ y)=g(x) \circ g(y) \text { for all } x, y \in V\}=: \operatorname{Aut}(V)
$$

at the identity e is a maximal compact subgroup of G.
Now denote by $E:=V \oplus i V$ the complexification of V. The complex bilinear extension of the Jordan product from V makes E to a complex Jordan algebra also with identity e. Denote by

$$
D:=\Omega \times i V \subset E
$$

the tube domain over Ω (up to a factor i a generalized upper halfplane). Then the group $G \ltimes V$ acts transitively by affine transformations on D and $z \mapsto(z-e) \circ(z+e)^{-1}$ defines a biholomorphic mapping from D to a bounded circular convex domain in E. Therefore D is a symmetric tube domain (a bounded symmetric domain of tube type), compare [7], [11] for details. On the other hand, every symmetric tube domain arises from a uniquely determined formally real Jordan algebra in the above way.
V is the direct sum of all its minimal ideals, we may therefore assume without loss of generality in the following that the formally real Jordan algebra V is simple. Then $C_{p, q}$ is connected and hence an orbit of the group $G=\mathrm{GL}(\Omega)$. Now let

$$
M_{p, q}:=C_{p, q} \times i V \subset E
$$

be the tube manifold over $C_{p, q}$. Then the group $G \ltimes V$ acts transitively on $M_{p, q}$ by affine transformations and $M_{p, q}$ is a homogeneous CR-submanifold of E. Some of the results obtained in [10] can be stated as follows: Suppose that V^{\prime} is another simple formally real Jordan algebra of rank r^{\prime} and $p^{\prime} \geq q^{\prime} \geq 0$ are integers with $0<p^{\prime}+q^{\prime} \leq r^{\prime}$. Then the tube manifolds $M_{p, q}$ and $M_{p^{\prime}, q^{\prime}}^{\prime}$ are CR-isomorphic if and only if the Jordan algebras V, V^{\prime} are isomorphic and $p=p^{\prime}$ as well as $q=q^{\prime}$ holds. In case $p+q<r$ the tube manifolds $M_{p, q}$ and $M_{p^{\prime}, q^{\prime}}^{\prime}$ are already locally CR-equivalent if and only if they are globally

CR-equivalent. Also in case $p+q<r$ every continuous CR-function on $M_{p, q}$ has a unique continuous extension to the convex hull

$$
\hat{M}_{p, q}= \begin{cases}E & q>0 \\ \bigcup_{m \geq p} M_{m, 0} & q=0\end{cases}
$$

of $M_{p, q}$ that is holomorphic on the interior (compare also Proposition 5.2 in [6] for the last statement).
2.1 Example. Let H be a real Hilbert space of finite dimension $n \geq 2$, that is, a real vector space together with a positive definite symmetric bilinear form $(x, y) \mapsto\langle x \mid y\rangle$ and corresponding norm $\|x\|=\sqrt{\langle x \mid x\rangle}$. Then $V:=\mathbb{R} \oplus H$ is a simple formally real Jordan algebra of rank 2 with respect to $(s, x) \circ(t, y):=$ $(s t+\langle x \mid y\rangle, s y+t x)$. The positive cone is $\Omega=\{(s, x) \in V: s>\|x\|\}$, the future cone in $n+1$-dimensional space time. Its smooth boundary part is the future light cone $C_{1,0}=\{(s, x) \in V: s=\|x\|>0\}$.
2.2 Example. Let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C} and $\mathcal{H}_{r}(\mathbb{K}):=\left\{x \in \mathbb{K}^{r \times r}: x=x^{*}\right\}$ the \mathbb{R}-linear space of all hermitian $r \times r$-matrices over \mathbb{K}. Then $V:=\mathcal{H}_{r}(\mathbb{K})$ is a simple formally real Jordan algebra of rank r with respect to $x \circ y:=(x y+y x) / 2$. The notion of eigenvalue and inverse coincides with the usual one for matrices. In particular, Ω is the open cone of positive definite matrices.

Example 2.2 can be extended by taking $\mathcal{H}_{r}(\mathbb{H})$ for the skew-field \mathbb{H} of quaternions and also by $\mathcal{H}_{3}(\mathbb{O})$ for the division algebra \mathbb{O} of octonions. Together with these extensions the above examples give a complete list of all simple formally real Jodan algebras.

3. Hermitian Jordan triple systems

For the next bunch of CR-manifolds let us recall the classical singular value decomposition of rectangular matrices: Fix integers $n \geq r \geq 1$ and let $E:=\mathbb{C}^{r \times n}$ be the space of all complex $r \times n$-matrices. Then to every $a \in E$ there exist unitary matrices $u \in \mathrm{U}(r)$ and $v \in \mathrm{U}(n)$ such that $d:=u a v \in E$ is a real diagonal matrix with diagonal entries $d_{11} \geq d_{22} \geq \ldots \geq d_{r r} \geq 0$, called the singular values of a. In particular, for every $a \neq 0$ the subset $S \subset E$ of all matrices having the same singular values as a is a generalization of the euclidian spheres in \mathbb{C}^{n} (which occur for $r=1$).

A singular value decomposition exists in every positive hermitian Jordan triple system. This is a complex vector space E of finite dimension together with a map (called Jordan triple product)

$$
E \times E \times E \rightarrow E, \quad(x, y, z) \mapsto\{x y z\}
$$

that satisfies the following properties, compare [11]:
(i) $\{x y z\}$ is symmetric complex bilinear in the outer variables x, z and conjugate linear in the inner variable y,
(ii) $\{a b\{x y z\}\}=\{\{a b x\} y z\}-\{x\{b a y\} z\}+\{x y\{a b z\}\}$ for all $a, b, x, y, z \in E$,
(iii) $\{x x x\}=\lambda x$ implies $x=0$ or $\lambda \in e^{\mathbb{R}}$ for all $x \in E$ and $\lambda \in \mathbb{C}$.

Examples are for instance every $E=\mathbb{C}^{r \times n}$ with $\{x y z\}=\left(x y^{*} z+z y^{*} x\right) / 2$, but also the subspaces $\left\{z \in \mathbb{C}^{n \times n}: z^{\prime}=z\right\}$ of all symmetric, as well as $\left\{z \in \mathbb{C}^{n \times n}: z^{\prime}=z\right\}$ of all skew-symmetric $n \times n$ matrices with the triple product restricted from $\mathbb{C}^{n \times n}$. Also, for every formally real Jordan algebra V the complexification $E=V \oplus i V$ becomes a positive hermitian Jordan triple system with respect to the triple product $\{x y z\}=(x \circ \bar{y}) \circ z+(z \circ \bar{y}) \circ x-x^{2} \circ \bar{y}$, where $y \mapsto \bar{y}$ is the conjugation of E with respect to the real form V of E.

Now fix an arbitrary positive hermitian Jordan triple system $E \neq 0$. The element $e \in E$ is called a tripotent if $\{e e e\}=e$ holds. Two tripotents $e, c \in E$ are called orthogonal if $\{e e c\}=0$, or equivalently, if $\{c c e\}=0$ holds. There exists an integer $r \geq 1$, called the rank of E, such that every $a \in E$ has a representation

$$
a=\sigma_{1} e_{1}+\sigma_{2} e_{2}+\ldots, \sigma_{r} e_{r}+
$$

with pairwise orthogonal non-zero tripotents $e_{1}, e_{2}, \ldots, e_{r}$ and uniquely determined real coefficients

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r} \geq 0
$$

For every k with $1 \leq k \leq r$ the number $\sigma_{k}(a):=\sigma_{k}$ is called the $k^{\text {th }}$ singular value of a. It is known that for every k the sum $\alpha_{k}:=\sigma_{1}+\sigma_{2}+\ldots+\sigma_{r}: E \rightarrow \mathbb{R}$ defines a norm on E. In particular, the open unit ball $D:=\left\{z \in E: \sigma_{1}(z)<1\right\}$ with respect to the norm $\sigma_{1}=\alpha_{1}$ is homogeneous under biholomorphic automorphisms and hence a bounded symmetric domain, compare [7] and [11] for details. On the other hand, every bounded symmetric domain occurs as the open σ_{1}-unit ball of a suitable positive hermitian Jordan triple system E.

The triple automorphism group

$$
\operatorname{Aut}(E):=\{g \in \mathrm{GL}(E): g\{x y z\}=\{(g x)(g y)(g z)\} \text { for all } x, y, z\}
$$

is compact and coincides with the group of all σ_{1}-isometries of E. Clearly, Aut (E) leaves invariant the mapping $\sigma:=\left(\sigma_{1}, \ldots, \sigma_{r}\right): E \rightarrow \mathbb{R}^{r}$. Denote by K the connected identity component of Aut (E). In case of $E=\mathbb{C}^{r \times n}$, for instance, K is the group of all transformations $z \mapsto u z v$ with $u \in \mathrm{U}(r)$ and $v \in \mathrm{U}(n)$.

Since E is the direct sum of its minimal ideals (the linear subspace $I \subset E$ is called an ideal, if $\{I E E\}+\{E I E\} \subset E$) we assume in the following that E is simple, or equivalently, that K acts irreducibly on E. For every s in

$$
\Delta:=\left\{s \in \mathbb{R}^{r}: 1=s_{1} \geq s_{2} \geq \ldots \geq s_{r} \geq 0\right\}
$$

the set

$$
M_{s}:=\{z \in E: \sigma(z)=s\}
$$

is a K-orbit and hence a homogeneous CR -submanifold of E. On the other hand, every non-zero K-orbit obviously is of the form $t \cdot M_{s}$ for uniquely determined $t>0$ and $s \in \Delta$ and hence is CR-equivalent to M_{s}. The following statements can be found in [9] and [8].

For every $a \in M_{s}$ The linear convex hull of M_{s} is given by

$$
\operatorname{ch}\left(M_{s}\right)=\left\{z \in E: \alpha_{k}(z) \leq \alpha_{k}(a) \text { for all } k\right\} .
$$

If the multiplicative analogon to the norms α_{k} is defined as the product $\mu_{k}:=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ then the polynomial convex hull of M_{s} can be written as

$$
\operatorname{pch}\left(M_{s}\right)=\left\{z \in E: \mu_{k}(z) \leq \mu_{k}(a) \text { for all } k\right\} .
$$

For the formualtion of further results on has to distinguish the two cases $a \in E$ invertible and $a \in E$ non-invertible. By definition, a is invertible in E if the conjugate linear operator $z \mapsto\{a z a\}$ is invertible on E (in case $E=\mathbb{C}^{r \times n}$ invertibility of a is just the usual notion for matrices, i.e. $r=n$ and $\operatorname{det}(a) \neq 0$).

For simplicity let us assume for the rest of the section that $a \in M_{s}$ and hence every element of M_{s} is noninvertible. Then M_{s} is a minimal Levi-nondegenerate CR-manifold and is CR-isomorphic to $M_{t}, t \in \Delta$, if and only $t=s$. Also, every continuous CR-function f on M_{s} has a unique continuous extension to the polynomial convex hull $\operatorname{pch}\left(M_{s}\right)$ which is holomorphic in a certain sense (in particular is holomorphic in the usual sense on the interior of $\operatorname{pch}\left(M_{s}\right) \subset E$ if not empty). In fact, $\operatorname{pch}\left(M_{s}\right)$ can be canonically be identified with the spectrum of the Banach algebra $\mathcal{C}_{\mathrm{CR}}\left(M_{s}\right)$.

References

1. Baouendi, M.S., Treves, F.: A property of the functions and distributions annihilated by a locally integrable system of complex vector fields. Ann. Math. (2) 113 (1981), 387-421.
2. Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Real Submanifolds in Complex Spaces and Their Mappings. Princeton Math. Series 47, Princeton Univ. Press, 1998.
3. Braun, H., Koecher, M.: Jordan-Algebren. Berlin-Heidelberg-New York: Springer 1966.
4. Chern, S.S., Moser, J.K.: Real hypersurfaces in complex manifolds. Acta. Math. 133 (1974), 219-271.
5. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Clarendon Press, Oxford 1994.
6. Fels, G., Kaup, W.: CR-manifolds of dimension 5: A Lie algebra approach. To appear
7. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press. New York San Francisco London 1978.
8. Kaup, W.: Bounded symmetric domains and polynomial convexity. manuscripta math. 114 (2004), 391-398.
9. Kaup, W., Zaitsev, D.: On the CR-structure of compact group orbits associated with bounded symmetric domains. Inventiones math. 153 (2003), 45-104.
10. Kaup, W., Zaitsev, D.: On local CR-transformations of Levi-degenerate group orbits in compact Hermitian symmetric spaces. J. Eur. Math. Soc., to appear
11. Loos, O.: Bounded symmetric domains and Jordan pairs. Mathematical Lectures. Irvine: University of California at Irvine 1977.
12. McCrimmon, K.:A Taste of Jordan Algebras. Berlin-Heidelberg-New York: Springer 2004

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany (e-mail: kaup@uni-tuebingen.de,)

