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In [6], Theorem 10, the following result has been obtained:

Proposition. Every biholomorphic mapping between Siegel domains in Cn is birational.

Siegel domains generalize the classical Siegel’s upper halfplanes which themselves
are generalizations of the usual upper halfplane in C. By definition a general Siegel domain
is given by the following data:

(i) An open convex cone Ω ⊂ IRp containing no affine real line.

(ii) An Ω-definite hermitian map F : Cq × Cq → Cp, that is,

(1) F is conjugate linear in the first and complex linear in the second variable.

(2) F (w,w) ∈ Ω for all w ∈ Cq with w 6= 0.

With these data then the corresponding Siegel domain is defined as

D = DΩ,F :=
{
(v, w) ∈ Cp ⊕ Cq : Im(v)− F (w,w) ∈ Ω

}
.

Every Siegel domain D as above is biholomorphically equivalent to a bounded domain in
Cn, n = p+q. Also any two of them are biholomorphically equivalent if and only if they are
affinely equivalent, see Theorem 11 in [6]. The main relevance of these domains, however,
stems from the fact that every bounded homogeneous domain in Cn can be realized as a
Siegel domain, see [8].

The easiest way to prove the above proposition seems to be the following: Let D
in Cn be a Siegel domain. Since D is equivalent to a bounded domain its biholomorphic
automorphism group G := Aut(D) is a real Lie group. The Lie algebra g of G can be
canonically identified with a Lie algebra of holomorphic vector fields on D. By a holomor-
phic vector field ξ on D we mean a holomorphic differential operator (acting on arbitrary
holomorphic vector valued functions defined on D)

ξ = f(z) ∂/∂z = f1(z) ∂/∂z1 + f2(z) ∂/∂z2 + . . .+ fn(z) ∂/∂zn

with f = (f1, . . . , fn) : D → Cn holomorphic. The bracket of the two holomorphic vector
fields ξ = f ∂/∂z , η = g ∂/∂z on D is given by [ξ, η] = (ξg − ηf) ∂/∂z .

Assume that D = DΩ,F is given as above with p+ q = n. As short hand let us write
E := Cn, V := Cp and W := Cq so that E = V ⊕W and every z ∈ E is of the form
z = (v, w) with v ∈ V , w ∈ W . We also write ξ = f ∂/∂z = g ∂/∂v + h ∂/∂w , where
g : D → V and h : D →W are the partial maps of f .

Since G contains all translations (v, w) 7→ (v + α,w), α ∈ V , the Lie algebra g
contains all constant vector fields α∂/∂v with α ∈ V . Also it is easy to see that g contains
all affine vector fields 2iF (β,w) ∂/∂v + β ∂/∂w with β ∈ W , as well as the linear vector
fields 2v ∂/∂v + w ∂/∂w and iw ∂/∂w .

It is convenient to consider l := g + i g ⊂ hol(D), where hol(D) is the complex Lie
algebra of all holomorphic vector fields on D. Then it is clear that the complex Lie algebra
l contains the affine Lie algebra

s := {(tz + α) ∂/∂z : t ∈ C, α ∈ E} ⊂ hol(D)
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and this forces g ⊂ P , where P is the complex Lie algebra of all polynomial holomorphic
vector fields onE. Indeed, fix a point a ∈ D and consider for θ := (z−a) ∂/∂z ∈ s ⊂ l the
endomorphism Θ := ad(θ) ∈ End(l), Θ(ξ) = [θ, ξ]. For given ξ = f(z) ∂/∂z ∈ l then
expand f into a power series f(z) =

∑
k≥0 fk(z − a) about a, where every fk : E → E

is a homogeneous polynomial map of degree k. Elementary calculus then gives Θ(ξ) =∑
k≥0(k − 1)fk(z − a) ∈ l near a ∈ D. Since l has finite dimension, the spectrum of Θ

must be finite as well, that is, fk = 0 for k big enough and thus ξ ∈ P .

With these preparations the proof of the above proposition follows with the following
criterion that seems to date back to Koecher [7], compare also [5], p. 511 and [3]:

Rationality criterion. Let g : D1 → D2 be a biholomorphic map between domains in E
and g∗ : hol(D2) → hol(D1) the induced Lie algebra isomorphism. Then g extends to a
rational map on E if the Lie subalgebra g∗(s) ⊂ hol(D1) contains only polynomial vector
fields.

Proof of the criterion. For every ξ = f(z) ∂/∂z ∈ hol(D2) we have by definition

(∗) g∗(ξ) =
(
g′(z)−1f(g(z))

)
∂/∂z ,

where g′(z) ∈ GL(E) for every z ∈ D1 is the derivative of g at z. Because of g∗(s) ⊂ P
we can define polynomial maps

p : E → E and q : E → End(E) by

g∗(z ∂/∂z ) = p(z) ∂/∂z and g∗(α∂/∂z ) = (q(α)z) ∂/∂z for all α ∈ E .
Together with (∗) this implies p(z) = g′(z)−1g(z) and q(z) = g′(z)−1 and finally g(z) =
q(z)−1p(z) for all z ∈ D1. But the matrix fractional transformation q−1p is rational on E.

Proof of the proposition. Let g : D1 → D2 be a biholomorphic mapping between Siegel do-
mains in E = Cn. Let furthermore g j be the Lie algebra of Aut(Dj) and l j := g j +i g j ⊂
hol(Dj) for j = 1, 2. Then l j consists of polynomial vector fields and contains the subal-
gebra s . In particular, g∗(s) ⊂ l1 implies that g is rational. But g−1 is rational by the same
argument giving that g is birational on E.

The rationality criterion can be extended. For this denote by R the complex Lie alge-
bra of all rational vector fields on E. Clearly, R contains P as a Lie subalgebra.

Generalized rationality criterion. Let g : D1 → D2 be a locally biholomorphic map
between domains in E and denote by g∗ : hol(D2) → hol(D1) the injective Lie algebra
homomorphism defined by (∗) above. Assume that l ⊂ hol(D2) is a linear subspace with
the following properties:

(iii) l contains every constant vector field α∂/∂z , α ∈ E.

(iv) l contains a vector field h(z) ∂/∂z , where h is birational on E.

Then g is rational if g∗(l) is contained in R .

Proof. We define the rational maps

p : E → E and q : E → End(E)

as above with the only modification g∗(h(z) ∂/∂z ) = p(z) ∂/∂z . This implies as before
h(g(z)) = q(z)−1p(z) and hence the rationality of g.
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Notice that condition (iv) is already satisfied for every h ∈ GL(E). On the other hand
the above reasoning for the Euler field η = z ∂/∂z can be extended.

Lemma. Let D ⊂ E be a domain and l ⊂ hol(D) a complex linear subspace satisfying
(iii), (iv) with a linear operator h ∈ GL(E) such that [η, l ] ⊂ l for η := h(z) ∂/∂z . Then, if
the endomorphism h is semi-simple on E and Re(λ) > 0 for every eigenvalue λ of h, every
vector field in l is polynomial, that is l ⊂ P ⊂ R .

Proof. By assumption we may assume that η =
∑n

k=1λkzk ∂/∂zk
with Re(λk) > 0 for all

k. Then the mapping

ψ : INn × {1, . . . , n} → C , (ν, j) 7−→
( n∑

k=1

νkλk

)
− λj

has finite fibers, and for every monomial vector field ξ = zν ∂/∂zj
we have [η, ξ] =

ψ(ν, j)ξ, that is, ξ is an eigenvector of Θ := ad(η) to the eigenvalue ψ(ν, j).
Because of (iii) we may assume that D contains the origin 0 ∈ E = Cn. Expanding every
vector field in l about 0 into a series of monomial vector fields we see that Θ splits l into a
finite direct sum of Θ-eigenspaces and all these consist of polynomial vector fields.

The extended rationality criterion and the lemma show that for the proof of the propo-
sition it is not necessary to use iw ∂/∂w ∈ g (as we did by assuring z ∂/∂z ∈ l = g + ig ),
it is enough to know (2v ∂/∂v + w ∂/∂w ) ∈ g .

The case of CR-submanifolds of E. Suppose that M,M ′ ⊂ E = Cn are real sub-
manifolds and a ∈ M , a′ ∈ M ′ are given points. A classical problem is the following:
When can we find domains D,D′ ⊂ E together with a biholomorphic map g : D → D′

such that a ∈ D, a′ = g(a) and D′ ∩M ′ = g(D ∩M)? If such a g exists it is uniquely
determined by the restriction g|D∩M , provided M is generically embedded at a, that is, the
real tangent space TaM ⊂ E satisfies TaM + iTaM = E. For simplicity we assume for
the following that this property is always satisfied and also that the M,M ′ are real-analytic
submanifolds of E. In addition we assume that M (and also M ′) is a CR-submanifold of
E, that is, that the complex dimension of TxM ∩ iTxM does not depend on x ∈ M . As
general reference for CR-manifolds we refer to [1].

Under the above assumptions we denote by hol(M,a) the real Lie algebra of all
germs of holomorphic vector fields ξ = f(z) ∂/∂z that are defined in an arbitrary open
neighbourhood U ⊂ E of a and are tangent to U∩M . SinceM is assumed to be generically
embedded at a we can consider hol(M,a) in a canonical way as real Lie subalgebra of the
complex Lie algebra hol(E, a). It is well understood when hol(E, a) is of finite dimension,
see [1] for details. We give some examples that fit into our discussion above:

For the Siegel domain D = DΩ,F the boundary part

S :=
{
(v, w) ∈ Cp ⊕ Cq : Im(v)− F (w,w) = 0

}

(the Shilov boundary of the unbounded domainD) is a CR-submanifold with hol(S, a) ∼= g
for every a ∈ S, where g is the Lie algebra of the biholomorphic automorphism group
G = Aut(D). Usually, S is defined by the above formula in more generality – instead of
(2) in (ii) only the following condition is required

(2’) F (w1, w2) = 0 for all w1 implies w2 = 0 and {F (w,w) : w ∈ Cq} spans Cp.

Then S is called a standard quadric in E = Cn of CR-codimension p, and a non-degenerate
hyperquadric if p = 1. For every a ∈ S and g := hol(S, a) the complex Lie algebra
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l = g + ig ⊂ hol(E, a) contains the affine Lie algebra s implying g ⊂ P . In fact, it is
known that all vector fields in g are even polynomials of degree≤ 2, see [2]. The rationality
criterion therefore gives the following statement, that is already contained in [9]:
Let D,D′ ⊂ E be domains and let S, S′ ⊂ E be standard quadrics with D ∩ S 6= ∅. Then
every biholomorphic mapping g : D → D′ with g(D ∩ S) = D′ ∩ S′ is rational.

We discuss a second type of CR-submanifolds M of E = Cn such that for l :=
hol(M,a) + i hol(M,a) condition (iii) is automatically satisfied: Let N ⊂ IRn be a real-
analytic submanifold. Then M := IRn + iN ⊂ Cn is a generically embedded CR-subman-
ifold, called the tube manifold with base N .
Now assume that the vector field η = λ1 ∂/∂x1

+ . . . + λn ∂/∂xn
is tangent to N ⊂ IRn,

where λ1, . . . , λn > 0 are real coefficients. Then, if g = hol(M,a) has finite dimension
for the tube M = IRn + iN , every vector field in g is polynomial and every biholomorphic
map g : D1 → D2 between domains of E with D1 ∩M 6= ∅ and g(D1 ∩M) ⊂ M is
rational. An example for this situation is the twisted n-ic N := {(t, t2, . . . , tn) : t ∈ IR}.
Here the vector field η =

∑n
k=1kzk∂/∂xk

is tangent to N ⊂ IRn.
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