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Abstract: Let M be a connected generic real-analytic CR-sub-
manifold of a finite-dimensional complex vector space E. Suppose
that for every a ∈ M the Lie algebra hol(M, a) of germs of all
infinitesimal real-analytic CR-automorphisms of M at a is finite-
dimensional and its complexification contains all constant vector
fields α ∂/∂z , α ∈ E, and the Euler vector field z ∂/∂z . Under these
assumptions we show that: (I) every hol(M, a) consists of polyno-
mial vector fields, hence coincides with the Lie algebra hol(M) of
all infinitesimal real-analytic CR-automorphisms of M ; (II) every
local real-analytic CR-automorphism of M extends to a birational
transformation of E, and (III) the group Bir(M) generated by
such birational transformations is realized as a group of projec-
tive transformations upon embedding E as a Zariski open subset
into a projective algebraic variety. Under additional assumptions
the group Bir(M) is shown to have the structure of a Lie group
with at most countably many connected components and Lie al-
gebra hol(M). All of the above results apply, for instance, to
Levi non-degenerate quadrics, as well as a large number of Levi
degenerate tube manifolds.

1. Introduction and Preliminaries

Let h = (h1, . . . , hk) be a Ck-valued Hermitian form on Cn, with n, k ≥ 1.
The form h is called non-degenerate if the following two conditions are sat-
isfied:

(i) the scalar Hermitian forms h1, . . . , hk are linearly independent over R;

(ii) h(z, z′) = 0 for all z′ ∈ Cn implies z = 0.

For a non-degenerate h one has k ≤ n2. Note that many authors define a
non-degenerate Hermitian form as a form satisfying condition (ii) alone.

To any Ck-valued Hermitian form h on Cn one associates a quadric Qh ⊂
Cn+k of CR-dimension n and CR-codimension k as follows:

Qh := {(z, w) ∈ Cn+k : Imw = h(z, z)},
where z = (z1, . . . , zn) is a point in Cn, and w = (w1, . . . , wk) is a point in
Ck. The CR-manifold Qh is called the quadric associated to h.
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If h is non-degenerate, then any C1-smooth CR-isomorphism between do-
mains in Qh extends to a birational map of Cn+k (see the classical papers
[Po], [Tan1], [A] for k = 1 and the papers [KT], [F], [Tum], [Ka1], [Su],
[B1], [B2] for 1 < k ≤ n2). These birational maps form a group (this is not
obvious at all and requires a justification – see Remark 1.1). We denote
this group by Bir(Qh) and call it the group of birational transformations of
Qh. For k = 1 every element of Bir(Qh) is a linear fractional transforma-
tion induced by an automorphism of CPn+1 (see [Po], [Tan1], [A]). For some
Hermitian forms h with 1 < k ≤ n2 formulas for the elements of certain sub-
groups of Bir(Qh) were given in [ES2], [ES3]. It was shown in [Tum] that the
group Bir(Qh) can be endowed with the structure of a Lie group (possibly
with uncountably many connected components) with Lie algebra isomor-
phic to the Lie algebra of all infinitesimal CR-automorphisms of Qh, where
a smooth vector field on Qh is called an infinitesimal CR-automorphism
if in a neighborhood of every point of Qh its local flow consists of CR-
transformations. Every infinitesimal CR-automorphism of Qh is known to
be polynomial. We will see below that Bir(Qh) can be embedded in a nat-
ural way into the complex group PGLN(C) as a closed real subgroup (see
Corollary 1.5 and Remark 1.6).

We are interested in regularizing the elements of the group Bir(Qh) as
stated in Definition 1.2 below. This definition applies to more general
CR-submanifolds M of a finite-dimensional complex vector space E than
quadrics, and we will first introduce Bir(M), the group of birational trans-
formation of M . Throughout the paper M is assumed to be connected,
locally closed, real-analytic and generic in E.

For every rational map g : E → F between complex vector spaces of
finite dimension, we denote by reg(g) ⊂ E the subset of all regular points
of g. Then reg(g) is Zariski open in E, and g induces a holomorphic map
reg(g) → F . By reg∗(g) ⊂ reg(g) we denote the subset of all points at which
g is locally biholomorphic. If g is birational it induces a biholomorphic map
reg∗(g) → reg∗(g−1).

Let Bir(E) be the group of all birational transformations on E. For every
generic CR-submanifold M ⊂ E we denote by BR(M) ⊂ Bir(E) the subset
of all g with the following property: there exists a non-empty domain V ⊂
M with V ⊂ reg(g) and g(V ) ⊂M . Then (BR(M))−1 = BR(M) is obvious,
but BR(M) = BR(M) · BR(M) does not hold in general. Indeed, if M is a
bounded domain in E then there is always a translation in BR(M) ·BR(M)
that is not in BR(M).

We define Bir(M) to be the subgroup of Bir(E) generated by BR(M).
One can give a sufficient condition that guarantees that Bir(M) = BR(M).
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Recall, first of all, that M is called minimal at a point a ∈ M if there
does not exist a CR-submanifold M0 ⊂ M with dimM0 < dimM and CR-
dimM0=CR-dimM , passing through a. The manifold M is called minimal
if it is minimal at every point.

Let M be a connected real-analytic generic CR-submanifold of E. For
such M we introduce the following

Condition (∗):

(a) M is minimal,

(b) M1 ⊂M holds for every connected real-analytic submanifold

M1 ⊂ E such that W ∩M = W ∩M1 6= ∅ for some domain W in E.

In Proposition 2.5 in Section 2 we show that if M satisfies Condition (∗)
then Bir(M) coincides with BR(M). This condition is satisfied, for example,
if M is minimal and closed in E. In particular, Condition (∗) is satisfied for
any quadric Qh (note that part (i) of the definition of the non-degeneracy of
an Hermitian form h given at the beginning of Section 1 is equivalent to Qh

being minimal). There are also a large number of examples of non-closed
everywhere Levi degenerate CR-submanifolds satisfying Condition (∗). An
interesting family of such CR-submanifolds is presented in Example 5.4 in
Section 5.

Remark 1.1. Proposition 2.5 plays a key role in understanding the group
Bir(Qh), but it appears to have been overlooked in the literature on quadrics
so far. Indeed, many authors seem to assume without proof that the set of
maps BR(Qh) is a group.

We will now give an exact definition of what we mean by regularization.
For a complex manifold Y we denote by Aut(Y ) the group of all biholomor-
phic automorphisms of Y .

Definition 1.2. LetM be a connected real-analytic generic CR-submanifold
M of a finite-dimensional complex vector space E. A subgroup G ⊂ Bir(M)
is said to be

(i) regularizable on a complex manifold Y if there exists an open holomor-
phic embedding ϕ : E → Y and a group homomorphism τ : G → Aut(Y )
such that for every g ∈ G one has ϕ ◦ g = τ(g) ◦ ϕ on reg(g);

(ii) projectively regularizable if for a suitable integer N there exists an ir-
reducible complex algebraic subvariety X ⊂ CPN , a group homomorphism
τ : G→ PGLN+1(C), and an algebraic isomorphism ϕ : E 7→ X0, where X0
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is a Zariski open subset of X, such that ϕ ◦ g = τ(g) ◦ϕ on reg(g) for every
g ∈ G.

Any map ϕ as above is called a regularization map.

Clearly, if G is projectively regularizable, it is regularizable on the connected
Zariski open subset

Ê :=
⋃
g∈G

τ(g)ϕ(E) (1.1)

of the non-singular part Xreg of X. The set Ê is the smallest τ(G)-invariant
domain in X that contains ϕ(E). Note also that one can assume that X is
not contained in any projective hyperplane in CPN .

Regularization results for certain groups of birational transformations
can be found in [HZ], [Z1]. If Qh is a hyperquadric (i.e. k = 1), the group
Bir(Qh) is known to be projectively regularizable with N = n + 1 due to
the classical work [Po], [Tan1], [A]. Further, it was shown in [ES1] (see also
[B2], [Mi]) that for 2 ≤ k ≤ n2 − 1, excluding the situation k = n = 2,
a quadric in general position has only affine automorphisms, in which case
Bir(Qh) is projectively regularizable with N = n + k for trivial reasons.
In fact, we show in Section 3 that Bir(Qh) is projectively regularizable for
any non-degenerate form h. This is a consequence of our main theorem,
which applies to much more general CR-manifolds than quadrics. In order
to state the theorem we need to introduce some notation and give necessary
definitions.

Let M be a real-analytic generic CR-submanifold of a complex mani-
fold Z. In what follows all local CR-automorphisms and infinitesimal CR-
automorphism of M are assumed to be real-analytic (note that a C1-smooth
CR-isomorphism between Levi non-degenerate real-analytic CR-manifolds
is in fact real-analytic – see Theorem 3.1 in [BJT]). We denote by hol(M)
the real Lie algebra of all real-analytic infinitesimal CR-automorphisms of
M . A vector field ξ onM lies in hol(M) if and only if ξ extends to a holomor-
phic vector field on a neighborhood U of M in Z. [We think of holomorphic
vector fields on U as holomorphic sections over U of the tangent bundle TU .
In particular if Z = E, a holomorphic vector field f(z) ∂/∂z is just given by
a holomorphic map f : U → E.]

For a ∈ M we denote by hol(M,a) the real Lie algebra of all germs at
a of vector fields in hol(V ), with V running over all open neighborhoods
of a in M . Clearly, hol(M,a) is a real Lie subalgebra of the complex Lie
algebra hol(Z, a). By Proposition 12.5.1 of [BER] the finite-dimensionality
of hol(M,a) implies that M is holomorphically non-degenerate at a, i.e. the
Lie algebra hol(M,a) is totally real in hol(Z, a) for all a ∈ M . Indeed, if
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ξ lies in hol(M,a) ∩ ihol(M,a), then ψ · ξ ∈ hol(M,a) for any germ ψ of a
holomorphic function near a. Thus the formal complexification of hol(M,a)
is isomorphic to hol(M,a) + ihol(M,a) ⊂ hol(Z, a) if dim hol(M,a) <∞.

Let M be a real-analytic generic CR-submanifold of a finite-dimensional
complex vector space E. For a point a ∈M we introduce the following

Property (P) at a:

(a) the Lie algebra hol(M,a) is finite-dimensional,

(b) the complex Lie algebra hol(M) + ihol(M) contains the complex solv-

able Lie algebra

s :=
{
(α+ cz) ∂/∂z : α ∈ E, c ∈ C}

. (1.2)

Further, we say that M has Property (P) if it has Property (P) at every
point. In Section 5 we give sufficient conditions for M to have Property
(P) (see Proposition 5.1) and discuss several examples. In particular, every
non-degenerate quadric Qh has Property (P).

We now state our main result, which provides projective regularization
of Bir(M) for a large class of CR-submanifolds.

THEOREM 1.3. Let M be a connected real-analytic generic CR-subman-
ifold of a finite-dimensional complex vector space E. Assume further that
M has Property (P). Then the following holds:

(I) for every a ∈M the Lie algebra hol(M,a) consists of polynomial vector
fields, hence hol(M,a) = hol(M);

(II) every real-analytic CR-isomorphism g between non-empty domains in
M extends to a map lying in Bir(M) of the form q(z)−1p(z), where p : E →
E, q : E → End(E) are polynomial maps, and reg(g) = reg(q−1) = {z ∈
E : det q(z) 6= 0};
(III) Bir(M) is projectively regularizable.

Our next theorem provides information on the extension of ϕ(M) into
CPN . Recall that a real-analytic CR-manifold M is called locally homoge-
neous at a point a ∈M if the evaluation map hol(M,a) → TaM , ξ 7→ ξa, is
surjective, and M is called locally homogeneous if M is locally homogeneous
at every point (see [Z2] for equivalent definitions of local homogeneity). In
the theorem to follow we assume that M has Property (P) at some point,
satisfies part (b) of Condition (∗), and is locally homogeneous. Observe that
these assumptions imply that M has Property (P) and satisfies Condition
(∗). Indeed, local homogeneity implies that M has Property (P). Further,
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by Proposition 4.2 of [Z2] the finite-dimensionality of hol(M,a) and local
homogeneity at a for all points a ∈ M yield that M is minimal. Hence
M satisfies Condition (∗). By Theorem 1.3 the group Bir(M) is projec-

tively regularizable for such a manifold M , and we denote by M̂ the unique
Bir(M)-orbit in CPN containing ϕ(M). It is not hard to show that M̂ is

a connected generic injectively immersed CR-submanifold of Ê (see (1.1)),

and ϕ(M) is an open subset of M̂ . We denote by Aut(M̂) the group of all

real-analytic CR-automorphisms of M̂ .
We now state our next result.

THEOREM 1.4. Let M be a connected real-analytic generic CR-subman-
ifold of a finite-dimensional complex vector space E. Assume that M has
Property (P) at some point, satisfies part (b) of Condition (∗), and is locally
homogeneous. Then for the regularization map ϕ and homomorphism τ
arising in Theorem 1.3 the set ϕ(M) is open and dense in M̂ , and Aut(M̂) =
τ(Bir(M)). Furthermore, if M \M does not contain a CR-submanifold of E
locally CR-equivalent to M , then τ(Bir(M)) is closed in PGLN+1(C), and
the Lie algebra of τ(Bir(M)) is canonically isomorphic to hol(M).

For M satisfying the assumptions of Theorem 1.4 we now introduce a
Lie group structure on Bir(M) by pulling back the Lie group structure
from τ(Bir(M)) by means of τ . In this Lie group topology Bir(M) has at
most countably many connected components. In Section 4 we give another
sufficient condition for the existence of a Lie group structure on Bir(M)
with this property (see Theorem 4.1). It comes from the natural faithful
representation of Bir(M) on hol(M).

Applying Theorems 1.3, 1.4, 4.1 to any quadric Qh we obtain the following
corollary.

Corollary 1.5. If h is non-degenerate, then Bir(Qh) is projectively regular-
izable, and for the regularization map ϕ the set ϕ(Qh) is open and dense in a
Bir(Qh)-orbit in CPN . The corresponding homomorphism τ maps Bir(Qh)
onto a closed real subgroup of PGLN+1(C), and Bir(Qh) admits the struc-
ture of a Lie group with at most countably many connected components
and Lie algebra isomorphic to hol(Qh).

By an additional argument one can show that in this Lie group structure
the number of connected components of Bir(Qh) is in fact finite. For the
case when Qh is the Šilov boundary of a Siegel domain, the regularization
statement of Corollary 1.5 is essentially contained in Theorem 9 of [KMO].
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Remark 1.6. For quadrics the degrees of the polynomial maps p and q
arising in statement (II) of Theorem 1.3 do not exceed 2. The rational-
ity property for local automorphisms of quadrics can be derived from the
results of [Ka1] (see Satz 2, p. 134). This property was also obtained in
[Tum], but our arguments are simpler even for more general CR-manifolds.
In addition, a Lie group structure on Bir(Qh) with Lie algebra hol(Qh) was
constructed in [Tum] by means of considering the natural faithful repre-
sentation ρ of Bir(Qh) on hol(Qh) that maps every g ∈ Bir(Qh) into the
corresponding push-forward transformation g∗ of vector fields in hol(Qh).
It follows, for instance, from a general theorem due to Palais (see [Pa],
Theorem VII, p. 103) that the image ρ(Bir(Qh)) ⊂ GL(hol(Qh)) has the
structure of a Lie group with Lie algebra hol(Qh), but this Lie group may
a priori have uncountably many connected components if ρ(Bir(Qh)) is not
closed in GL(hol(Qh)). No proof of closedness was given in [Tum]. Our con-
struction of a Lie group structure on Bir(M) in Theorem 1.4 relies on the
algebraic regularization map ϕ : E → CPN , while the Lie group structure
arising in Theorem 4.1 comes from the natural representation ρ of Bir(M)
on hol(M). In Theorem 1.4 we show that Bir(M) embeds as a closed sub-
group into PGLN+1(C), whereas in Theorem 4.1 we prove that ρ(Bir(M))
is closed in GL(hol(M)). The Lie group structures on Bir(M) arising from
Theorems 1.4 and 4.1 for M = Qh are identical. We also note that since the
extension Q̂h of Qh is Levi non-degenerate and has pairwise equivalent Levi
forms at all points, the existence of the structure of a Lie group on Aut(Q̂h)
(and hence on Bir(Qh)) with Lie algebra hol(Qh) in a certain topology fol-
lows from the results of [Tan2]. We refer the reader to [BRWZ], [LMZ] and
references therein for results on the existence of Lie group structures on the
groups of CR-automorphisms of more general CR-manifolds.

If one does not insist on finding a projective regularization, the group
Bir(Qh) (in fact, the group Bir(M) for much more general M) can be regu-
larized on some complex manifold in the sense of part (i) of Definition 1.2
as follows. Consider the complexification l of hol(Qh). The complex Lie
algebra l consists of polynomial vector fields of degree not exceeding 2 and
has a natural grading l = l−1⊕ l0⊕ l1, where the Lie subalgebra l−1 consists
of all constant vector fields on E and all vector fields in l0 := l0 ⊕ l1 vanish
at the origin (see e.g. Section 3). Since [ξ, l0] is not contained in l0 for
every non-zero ξ ∈ l−1, the normalizer of l0 in l coincides with l0. Let L

be the connected simply-connected group with Lie algebra l. The stabilizer
L0 of l0 under the adjoint representation of L is a closed complex subgroup
of L. Since the normalizer of l0 in l coincides with l0, the Lie algebra of
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L0 coincides with l0. Thus L◦0 is a closed complex connected subgroup of
L with Lie algebra l0, and we consider the simply-connected complex ho-
mogeneous manifold Yh := L/L◦0. One can show that the vector group
E+ := (E,+) naturally lies in L, and therefore E embeds into Yh as an an
open (and dense) subset. Let Bir(Qh)

◦ denote the connected component of
the identity of Bir(Qh) with respect to the Lie group topology on Bir(Qh)
provided, say, by the results of [Tum]. It can be easily shown that Bir(Qh)

◦

is regularizable on the manifold Yh.
Further, let Bir0(Qh) := {g ∈ Bir(Qh) : 0 ∈ reg∗(g) and g(0) = 0}. The

full group Bir(Qh) is generated by Bir(Qh)
◦ and Bir0(Qh). For an element

g ∈ Bir0(Qh) the corresponding push-forward map g∗ is a Lie algebra au-
tomorphism of l leaving l0 invariant. This automorphism induces an auto-
morphism of L leaving L◦0 invariant, and therefore gives rise to an element
of Aut(Yh). Hence the full group Bir(Qh) is regularizable on Yh.

While the approach that we have just outlined solves the regularization
problem for Bir(Qh) in principle (in the sense of part (i) of Definition 1.2),
our Theorem 1.3 contains a much stronger result. It provides an algebraic
solution to this problem and applies to a large class of CR-manifolds.

We would like to thank Michael Eastwood for many helpful discussions.
This research is supported by the Australian Research Council and was
initiated while the second author was visiting the Australian National Uni-
versity.

2. Birational Transformations of a Vector Space

In this section we state two general propositions on birational maps of a
finite-dimensional complex vector space E.

The first proposition will be used in the proofs of Theorems 1.3, 1.4 but
is also of independent interest (cf. [Ko1], [Ko2], [Ka2]). For every α ∈ E
we consider the constant holomorphic vector field α ∂/∂z , and denote by η
the Euler vector field z ∂/∂z .

Proposition 2.1. Let D1, D2 ⊂ E be non-empty domains and g : D1 → D2

a biholomorphic map with induced Lie algebra isomorphism g∗ : hol(D1) →
hol(D2). With g∗ := g−1

∗ define the holomorphic maps

pg : D1 → E and qg : D1 → End(E)

by

g∗(η) = pg(z) ∂/∂z , g∗(α ∂/∂z ) =
(
qg(z)α

)
∂/∂z (2.1)

for all α ∈ E. Then qg(D1) ⊂ GL(E) and

g(z) = qg(z)
−1pg(z) with g′(z) = qg(z)

−1 for all z ∈ D1. (2.2)
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Proof: For every h(z) ∂/∂z ∈ hol(D2) we have by definition

g∗(h(z) ∂/∂z ) =
(
g′(z)−1h(g(z))

)
∂/∂z ∈ hol(D1),

where g′(z) ∈ GL(E) for z ∈ D1 is the derivative of g at z. For h(z) ≡ α,
with α ∈ E, this implies g′(z)−1α = qg(z)α, and for h(z) ≡ z we get
g′(z)−1g(z) = pg(z). Formula (2.2) follows from these two relations. ¤

Recall that s is the complex solvable Lie subalgebra of hol(E) spanned
by all constant vector fields α ∂/∂z and the Euler vector field η (see (1.2)).
Proposition 2.1 yields the following corollary.

Proposition 2.2. Suppose that for the biholomorphic map g : D1 → D2

from Proposition 2.1 all vector fields in both g∗(s) and g∗(s) extend to
rational vector fields on E. Then g extends to an element of Bir(E) with
reg(g) = reg(g′) = reg(q−1

g ).

Proof: We only need to show that reg(g) = reg(g′). Clearly, we have
reg(g) ⊂ reg(g′). To obtain the opposite inclusion, we suppose that reg(g′)\
reg(g) is non-empty. We let n := dimE, identify E with Cn, and write g
as g = (g1, . . . , gn). Then there exists j such that A := reg(g′) \ reg(gj) is
non-empty. It then follows that one can find a point a ∈ A which is not an
indeterminacy point of gj, that is, gj = rj/sj, where rj and sj are polyno-
mials with rj(a) 6= 0, sj(a) = 0. Hence for some k the order of vanishing of
sj∂rj/∂zk − rj∂sj/∂zk at a is finite and strictly less than that of s2

j . There-
fore, a is not a regular point of ∂gj/∂zk, which contradicts our choice of a. ¤

Remark 2.3. We will use Proposition 2.2 in Section 3 in the case when all
vector fields in g∗(s) and g∗(s) extend to polynomial vector fields on E. In
this situation reg(g) = reg(q−1

g ) = {z ∈ E : det qg(z) 6= 0}. In fact, det qg is
a denominator of the rational map g, that is, (det qg)g is a polynomial map.
As the following example shows, det qg need not be an exact denominator
(a denominator of minimal degree) of g.

Example 2.4. Let E := Cn×m, b ∈ Cm×n a fixed matrix, and

g(z) := (11− zb)−1z,

where 11 is the n × n identity matrix. Then g ∈ Bir(E) (indeed g−1(w) =
(11 + wb)−1w). Differentiation yields

g′(z)α = (11− zb)−1α(11− bz)−1
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for all α ∈ E. In particular, for the functions pg, qg from Proposition 2.1 we
have

qg(z)α = (11− zb)α(11− bz) and pg(z) = z − zbz

for all α ∈ E. Thus det qg is not an exact denominator of g. Further,
a moment’s thought gives det qg(z) = det(11 − zb)m det(11 − bz)n, hence
reg(g) = {z ∈ E : det(11− zb) 6= 0}.

In the next proposition we relate the group Bir(M) of birational trans-
formations of a CR-submanifold M ⊂ E to the subset BR(M) ⊂ Bir(E) by
means of Condition (∗) as stated in Section 1.

Proposition 2.5. Let M be a connected real-analytic generic CR-subman-
ifold of E. If Condition (∗) is satisfied for M , then Bir(M) = BR(M).
Moreover, for every g ∈ BR(M) we have g(M ∩ reg∗(g)) = M ∩ reg∗(g−1).

Proof: Fix g ∈ BR(M) and let V ⊂ M be a non-empty domain such that
V ⊂ reg∗(g) and g(V ) ⊂M . By Lemma 2.2 of [FK2] the non-empty set M∩
reg∗(g) is connected, and therefore M1 := g(M ∩ reg∗(g)) is a real-analytic
connected submanifold of E. Since W := g(V ) is a non-empty domain in
M such that W ∩M1 = W , Condition (∗) implies that M1 ⊂M ∩ reg∗(g−1).
Interchanging the roles of g and g−1 gives g(M ∩ reg∗(g)) = M ∩ reg∗(g−1).

Now for any g1, g2 ∈ BR(M) we choose a non-empty domain V ⊂ M
with V ⊂ reg∗(g1) and g1(V ) ⊂ reg∗(g2). Then g2 ◦g1 ∈ BR(M). Therefore,
BR(M) = Bir(M) as required. ¤

We stress the importance of Proposition 2.5 for the correct understanding
of BR(M) and Bir(M). In particular, if M does not satisfy the assumptions
of Proposition 2.5, then the set BR(M) may not be a group.

As we stated in Section 1, a connected real-analytic generic submani-
fold M ⊂ E satisfies Condition (∗) if M is minimal and closed. There is,
however, a large class of examples of non-closed CR-submanifolds satisfying
Condition (∗). An interesting family of such manifolds is given in Example
5.4 in Section 5.
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3. Proof of Theorems 1.3 and 1.4

We will first prove Theorem 1.3.
Without loss of generality we assume that M contains the origin, and let l

be the complexification of hol(M, 0). Arguing as in the proof of Proposition
4.2 of [FK1], we obtain that l admits a Z-grading

l =
⊕

m∈Z
lm, [lm, l`] ⊂ lm+`, (3.1)

where lm is the m-eigenspace of ad η in l, and lm = 0 for m < −1 as
well as for m large enough. Every lm consists of polynomial vector fields
homogeneous of degree m+ 1 with

l−1 = {α ∂/∂z : α ∈ E}
being the Lie algebra of all constant vector fields on E. Thus every vector
field in hol(M, 0) is polynomial. Arguing in this way for every a ∈ M we
see that all Lie algebras hol(M,a) are polynomial and hence coincide with
hol(M). Thus we have obtained statement (I).

For a non-empty domain D ⊂ E we identify l with a Lie subalgebra of
hol(D) by restriction. Let V1, V2 be non-empty domains in M and g : V1 →
V2 a real-analytic CR-isomorphism. Then there exist domains D1, D2 ⊂ E
and a biholomorphic extension g : D1 → D2 with g∗(l) = l. Since all vector
fields in l are polynomial, Proposition 2.2 yields that g extends to an element
of Bir(M) of the form q−1p, where p : E → E and q : E → End(E) are
polynomial maps (see (2.1)). By Remark 2.3 we have reg(g) = reg(q−1) =
{z ∈ E : det q(z) 6= 0}. Thus we have obtained statement (II).

Further, for every a ∈ E the isotropy Lie subalgebra

la := {ξ ∈ l : ξa = 0}
has codimension n := dimE in l, and l is the direct sum of subspaces
l = l−1 ⊕ la with la 6= lb for all a, b ∈ E, a 6= b. Let G be the Grassmannian
of all complex linear subspaces Λ ⊂ l of codimension n. Then G is a
rational projective algebraic complex manifold on which the complex linear
group GL(l) acts transitively and algebraically by means of the canonical
projection GL(l) → PGL(l) ⊂ Aut(G).

The subset

U := {Λ ∈ G : l = l−1 ⊕ Λ}
is Zariski open in G and is algebraically equivalent to the complex vector
space of all linear operators λ : l0 → l−1 (just identify every λ with its graph
{ξ + λ(ξ) : ξ ∈ l0} ∈ G). In this coordinate chart every automorphism of G
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arising from the action of GL(l) can be written as a matrix linear fractional
transformation.

Consider the injective holomorphic map

ϕ : E → G , a 7→ la.

Then ϕ(E) ⊂ U , and since all vector fields in l are polynomial, the map ϕ
is an algebraic morphism. As a consequence, the set ϕ(E) is constructible.
Let X be the Zariski closure of ϕ(E). Clearly, X is an irreducible algebraic
subvariety in G and ϕ(E) contains a Zariski open (and dense) subset of X,
hence the closure of ϕ(E) in the topology of G coincides with X.

Define

Bir(E, l) := {g ∈ Bir(E) : g∗(l) = l} .
Observe that Bir(E, l) contains the set BR(M). Since every element of
Bir(M) is the composition of a finite number of elements of BR(M), it
follows that Bir(M) ⊂ Bir(E, l).

For any g ∈ Bir(E, l) we regard the push-forward map g∗ as an element
of Aut(l) ⊂ GL(l), where Aut(l) is the complex algebraic subgroup of GL(l)
that consists of all Lie algebra automorphisms of l. Define ν to be the
homomorphism

ν : Bir(E, l) → Aut(l), g 7→ g∗. (3.2)

By formula (2.2) the homomorphism ν is injective. Note that the canonical
homomorphism π : Aut(l) → PGL(l) is injective as well.

Since for g ∈ Bir(E, l) we have g∗(la) = lg(a) for all a ∈ reg∗(g), the map
π(g∗) preserves X and the following holds:

ϕ ◦ g = σ(g) ◦ ϕ on reg(g), (3.3)

where σ := π ◦ ν. Formula (3.3) applies, in particular, to every translation
g(z) = z+β, β ∈ E (note that every translation is an element of Bir(E, l)).
It is straightforward to see that the action of the complex vector group
E+ := (E,+) on G through the homomorphism σ is algebraic, and formula
(3.3) implies that ϕ(E) is an orbit of this action. It then follows that ϕ(E)
is a Zariski open subset of X lying in the non-singular part Xreg of X. By
Zariski’s Main Theorem (see [Mu], p. 209), ϕ : E → ϕ(E) is an algebraic
isomorphism.

We now embed G into CPN for a sufficiently large integer N by the
Plücker map and regard X as an algebraic subvariety of CPN and PGL(l)
as a subgroup of PGLN+1(C). Formula (3.3) then yields that Bir(M) is
projectively regularizable with τ := σ|Bir(M). This proves statement (III).

The proof of Theorem 1.3 is complete. ¤
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We will now prove Theorem 1.4.
It is not hard to show that M̂ is a connected generic injectively immersed

submanifold of the Zariski open subset Ê of the non-singular part Xreg of

X (see (1.1)), and ϕ(M) as an open subset of M̂ . The minimality of M

implies that M̂ is minimal as well. Therefore, it follows from Lemma 2.2 of
[FK2] that M̂ ∩ ϕ(E) is connected. Next, part (b) of Condition (∗) yields

that M̂ ∩ ϕ(E) = ϕ(M) and that ϕ(M) is dense in M̂ .

To show that Aut(M̂) = τ(Bir(M)), observe that for every g ∈ Aut(M̂)
there exist domains V1, V2 ⊂ ϕ(M) such that g(V1) = V2. Then the com-
position ϕ−1 ◦ g ◦ ϕ is a real-analytic CR-diffeomorphism between the do-
mains ϕ−1(V1), ϕ

−1(V2) in M . By statement (II) of Theorem 1.3, the map
ϕ−1 ◦ g ◦ ϕ extends to an element g0 of Bir(M), hence g = τ(g0). Thus

Aut(M̂) = τ(Bir(M)).
Assume now that M \M does not contain a CR-submanifold of E locally

CR-equivalent to M . Let gn be a sequence in τ(Bir(M)) converging to
an element g ∈ PGLN+1(C). We claim that g(ϕ(M)) ∩ ϕ(E) 6= ∅. Indeed,
otherwise g(ϕ(M)) lies in a Zariski closed subset of Xreg, which is impossible
since g(ϕ(M)) is generic in Xreg. Thus for some domain V ⊂ ϕ(M) we have
g(V ) ⊂ ϕ(E). Clearly, g(V ) is a CR-submanifold of ϕ(E) locally equivalent

to ϕ(M) and contained in ϕ(M). It then follows that there exists x0 ∈ V for
which g(x0) ∈ ϕ(M). Since M is locally closed in E, for some neighborhood
V ′ ⊂ V of x0 in ϕ(M) we have g(V ′) ⊂ ϕ(M). Hence g ∈ τ(Bir(M)), and
therefore τ(Bir(M)) is closed in PGLN+1(C).

Let a be the Lie subalgebra of the Lie algebra of PGLN+1(C) correspond-
ing to the closed subgroup τ(Bir(M)) ⊂ PGLN+1(C). Every element v ∈ a

is a holomorphic vector field on CPN tangent to M̂ and gives rise to a
holomorphic vector field on E tangent to M .

Conversely, consider a vector field ξ ∈ hol(M) and fix a ∈M . Near a the
vector field ξ can be integrated to a local 1-parameter group t 7→ gt, with
|t| < ε, of local real-analytic CR-isomorphisms of M . By statement (II) of
Theorem 1.3 every gt extends to an element of Bir(M). Further, one can
define by composition a map gt ∈ Bir(M) for every t ∈ R and obtain a 1-
parameter subgroup of Bir(M). Then t 7→ τ(gt) is a continuous 1-parameter
subgroup of τ(Bir(M)) and hence τ(gt) = exp(tv) for some v ∈ a.

Thus we have established an isomorphism between a and hol(M), and
the proof of Theorem 1.4 is complete. ¤

For the remainder of the article we set g := hol(M). Let M satisfy
the assumptions of Theorem 1.3. It is not hard to show that under these
assumptions the group Bir(M) can be endowed with the structure of a Lie
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group (possibly with uncountably many connected components) whose Lie
algebra is g. Set ρ := ν|Bir(M), with ν defined in (3.2). The homomorphism
ρ is injective, and the image ρ(Bir(M)) lies in the group Aut(g) of all Lie
algebra automorphisms of g, which is a real algebraic subgroup of each of
GL(g) and Aut(l). In fact, the map

ρ : Bir(M) → Aut(g)

is just the adjoint representation of Bir(M). In the next section we will
show that under additional assumptions ρ(Bir(M)) is closed in Aut(g).

4. Closed Embedding of Bir(M) into Aut(g)

Throughout this section we suppose thatM has Property (P) and satisfies
Condition (∗). In particular, by Proposition 2.5 we then have Bir(M) =
BR(M). Under these assumptions, which are weaker than those of Theorem
1.4, we obtain the existence of a Lie group structure on Bir(M) with at
most countably many connected components and Lie algebra g. Instead
of investigating the closedness of τ(Bir(M)) in PGLN+1(C), as we did in
the proof of Theorem 1.4, we investigate the closedness of ρ(Bir(M)) in
Aut(g). Note that a simple example shows that there is always a closed
subgroup of GL(l) whose image in PGL(l) under the canonical projection
GL(l) → PGL(l) is not closed.

The result of this section is the following theorem.

THEOREM 4.1. Let M be a connected real-analytic generic CR-sub-
manifold of a finite-dimensional complex vector space E. Assume that M
has Property (P) and satisfies Condition (∗). Then ρ(Bir(M)) is closed in
Aut(g).

Proof: Let gn be a sequence in Bir(M) such that the sequence fn := ρ(gn)
converges in Aut(g) to an element f . By Proposition 2.1 every map gn can be
written as gn = q−1

n pn, where pn := pgn and qn := qgn are polynomial maps
on E found from formulas (2.1). Since the maps f−1

n converge in Aut(g)
to f−1, the sequences pn, qn converge (uniformly on compact subsets of E)
to polynomial maps p : E → E and q : E → End(E), respectively, and we
have f−1(α ∂/∂z ) =

(
q(z)α

)
∂/∂z for all α ∈ E.

Similarly, every map g−1
n can be written as g−1

n = q̃−1
n p̃n, where p̃n := pg−1

n

and q̃n := qg−1
n

are polynomial maps. The sequences p̃n and q̃n converge to
polynomial maps p̃ : E → E and q̃ : E → End(E), respectively, and we
have f(α ∂/∂z ) =

(
q̃(z)α

)
∂/∂z for all α ∈ E.

Since f−1
k f → id ∈ Aut(g), for every neighborhood V of the identity in

Aut(g) one can find an element f̂ ∈ ρ(Bir(M)) with f̂f ∈ V . Choosing V
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such that V = V−1 one can also assume that f−1f̂−1 ∈ V . Hence by replac-
ing gn by ρ−1(f̂)gn and f by f̂f we can assume without loss of generality
that det q 6≡ 0 and det q̃ 6≡ 0. We then define the rational maps g := q−1p
and g̃ := q̃−1p̃.

Let

A := {z ∈ E : det q(z) = 0}, B := {z ∈ E : det q̃(z) = 0}.

Since det qn → det q and reg(gn) = {z ∈ E : det qn(z) 6= 0} (see Proposition
2.2), it follows that gn → g uniformly on compact subsets of E\A. Similarly,
g−1

n → g̃ uniformly on compact subsets of E \ B. For every ξ ∈ l, ξ =
h(z) ∂/∂z , we have

f(ξ)(z) = q̃(z)h(g̃(z)) ∂/∂z , f−1(ξ)(z) = q(z)h(g(z)) ∂/∂z .

Applying the identity

ξ = f(f−1(ξ)) = q̃(z)q(g̃(z))h(g(g̃(z))) ∂/∂z

to constant vector fields ξ = α ∂/∂z , we see that q̃(z)q(g̃(z)) ≡ id. Applying
this identity to the Euler vector field η and interchanging the roles of f
and f−1 we obtain g̃ = g−1, thus g ∈ Bir(E). By Proposition 2.5 we have
gn ∈ BR(M) and gn(M ∩ reg∗(gn)) = M ∩ reg∗(g−1

n ), which yields that
g ∈ Bir(M). Finally, since gn → g on E \ A and g−1

n → g−1 on E \ B, it
follows that (gn)∗ → g∗. Hence f = ρ(g).

The proof of the theorem is complete. ¤

5. Property (P)

In this section we give sufficient conditions for a CR-submanifold to have
Property (P) and discuss examples of manifolds with this property (for the
statement of Property (P) see Section 1).

We call a CR-submanifold M of a complex manifold Z semi-homogeneous
at a point a ∈ M if the span over C of the values ξa of elements ξ ∈
hol(M,a) at a contains Ta(M). Also, we call M semi-homogeneous if M
is semi-homogeneous at every point. Clearly, local homogeneity implies
semi-homogeneity for a real-analytic CR-submanifold.

With our notation g = hol(M) we state the following proposition.

Proposition 5.1. Let M be a connected real-analytic generic CR-subman-
ifold of a finite-dimensional complex vector space E. Let a be a point in
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M . Assume that:

(1) M is holomorphically non-degenerate at a;

(2) M is minimal at a;

(3) M is semi-homogeneous at a;

(4) the complex Lie algebra g + ig contains the vector
field (z − a) ∂/∂z .

Then M has property (P).

Proof: By Theorem 12.5.3 in [BER], assumptions (1) and (2) imply that
hol(M, b) is finite-dimensional for all b ∈M .

Without loss of generality we assume that a = 0. Then using assumption
(4) we obtain, as at the beginning of Section 3, that l := hol(M, 0) +
ihol(M, 0) admits grading (3.1), where lm is the m-eigenspace of ad η in l

and lm = 0 for m < −1 as well as for m large enough. Every lm consists
of polynomial vector fields homogeneous of degree m + 1. Since all vector
fields in lm for m > −1 vanish at the origin, assumption (3) implies that l−1

is the space of all constant vector fields on E. The proof is complete. ¤

We now give examples of CR-submanifolds that have Property (P).

Example 5.2. Every quadric Qh ⊂ Cn+k associated to a non-degenerate
Hermitian form h has Property (P). Indeed, Qh is homogeneous under the
action of the group of maps

z 7→ z + α,

w 7→ w + 2ih(z, α) + β,

where (α, β) ∈ Qh. Thus all Lie algebras hol(Qh, a) coincide. In fact, they
coincide with the Lie algebra hol(Qh), which is finite-dimensional (see [B1],
[B2], [Tum]). Furthermore, hol(Qh) clearly contains the vector fields s ∂/∂w ,
r ∂/∂z + 2ih(z, r) ∂/∂w , z ∂/∂z + 2w ∂/∂w , iz ∂/∂z , with s ∈ Rk, r ∈ Cn.
Therefore, the complexification of hol(Qh) contains all constant vector fields
and the Euler vector field η. Hence the quadric Qh has Property (P).

Example 5.3. Let F ⊂ Rn be an arbitrary connected real-analytic sub-
manifold and

M := F + iRn ⊂ Cn

the corresponding tube submanifold with base F . Then M is a generic
semi-homogeneous CR-submanifold of E, and g + ig contains all constant
holomorphic vector fields on E. Furthermore (see Lemma 4.1 of [FK2]), the



Local CR-Automorphisms of Real-Analytic CR-Manifolds 17

tube manifold M is minimal at a point if and only if

F is not contained in any affine hyperplane of Rn, (5.1)

hence a tube manifold is minimal if it is minimal at one point. Next (see
Proposition 4.3 of [FK2]), M is holomorphically non-degenerate at a point
if and only if

the only constant vector field ξ = α ∂/∂x tangent to F is ξ = 0, (5.2)

hence a tube manifold is holomorphically non-degenerate if it is holomor-
phically non-degenerate at one point.

To meet conditions (1), (2), (4) of Proposition 5.1 it is therefore sufficient
to require besides (5.1), (5.2) that F is a cone, that is, tF = F for every
real t > 0. For every cone F the Levi form of M is degenerate at every
point (condition (ii) stated at the beginning of Section 1 does not hold).

From the large class of tube manifolds that have Property (P) we single
out the following special one.

Example 5.4. Fix integers p ≥ q ≥ 1 with n = p+ q ≥ 3. Then

Hp,q := {x ∈ Rn : x2
1 + · · ·+ x2

p = x2
p+1 + · · ·+ x2

n} (5.3)

is a real hyperquadric with 0 as the only singularity. Let F be a connected
component of the non-singular part of Hp,q and M := F + iRn the corre-
sponding tube submanifold. Then M is a homogeneous CR-submanifold of
Cn that has Property (P) and satisfies Condition (∗). The Levi form of M
is degenerate at every point. For q = 1 the non-singular part of Hp,q has two
connected components (given by xn > 0 and xn < 0), the future light cone
and the past light cone. In this case the group Bir(M) can be canonically
identified with an open subgroup (having two connected components) of
O(n, 2). For q > 1 the non-singular part of Hp,q is connected and Bir(M)
is a real algebraic group. For every a ∈ M the Lie algebra hol(M,a) is
isomorphic to so(p+1, q+1) (cf. [FK1], p. 21).

Example 5.5. Let D ⊂ E be an irreducible bounded symmetric domain
of rank r given in its Harish-Chandra realization, and Z its compact dual
containing E as a Zariski open subset. Then D is convex and invariant
under the circle group exp(iRη) ⊂ GL(E). The complex manifold Z is a
compact rational algebraic variety on which the simple complex Lie group
L := Aut(Z) acts transitively. All transformations in G := Aut(D) extend
to elements of L, thus in this way G is a real form of L and also acts on Z.
On Z the group G has exactly

(
r+2
2

)
orbits. Among these there are exactly

r+1 open orbits (includingD) and a unique closed orbit, the Šilov boundary
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of D, which coincides with the extremal boundary ∂eD of the convex set
D. Every G-orbit is a generic homogeneous CR-submanifold of Z invariant
under the circle group exp(iRη) ⊂ G. Furthermore, for every orbit G(b),
b ∈ Z, the intersection M := G(b) ∩ E is a connected CR-submanifold
that has Property (P), and for every a ∈ M the Lie algebra hol(M,a) is
isomorphic to the Lie algebra of G, provided neither G(b) is open in Z nor
G(b) = ∂eD in the case whenD is of tube type (in this last case ∂eD is totally
real). The Šilov boundary (except when D is of tube type) can be locally
realized as a standard quadric in E and, in particular, has non-degenerate
Levi form. Every G-orbit that is neither open nor closed in Z is Levi
degenerate (more precisely 2-nondegenerate) and hence cannot be locally
realized as a standard quadric in E. The group Bir(M) is regularizable on
the simply-connected complex manifold Z, and this is the only possibility
up to isomorphism.

Example 5.6. We specialize Example 5.5 to the case

E = {z ∈ C2×2 : z′ = z} and D = {z ∈ E : zz∗ < 11},
where z′ is the transpose and z∗ the transpose conjugate of a matrix z.
Then D is irreducible symmetric of rank 2, and Z can be identified with
a complex projective quadric in CP4. Also, G is isomorphic to an open
subgroup of O(2, 3) of index 2. The boundary ∂D of D decomposes into
two G-orbits: the totally real Šilov boundary ∂eD ' RP3 and the smooth
part M of ∂D, which has Property (P). The manifold M is locally CR-
equivalent to the tube submanifold over the future the light cone (see (5.3)
for p = 2, q = 1). Here Z is simply-connected while the homogeneous
manifold M has fundamental group Z2.
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