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ABSTRACT: In this paper we classify up to affine equivalence all local tube realizations
of real hyperquadrics in Cn. We show that this problem can be reduced to the classifica-
tion, up to isomorphism, of commutative nilpotent real and complex algebras. We also
develop some structure theory for commutative nilpotent algebras over arbitrary fields
of characteristic zero.

1. Introduction
It is a well-known fact that every real-analytic manifold M together with an invo-

lutive CR-structure (HM,J) admits at least locally a generic embedding into some Cn,
such that the CR-structure induced from the ambient space Cn coincides with the original
one. A particularly important class of CR-submanifolds of Cn are the so-called CR-tubes,
i.e., product manifolds M = iF + IRn ⊂ iIRn ⊕ IRn = Cn together with the inherited
CR-structure, where F ⊂ IRn is a submanifold. One important point here is that the CR-
structure of iF + IRn is closely related to real-geometric properties of the base F , which
are often easier to deal with, see e.g. [9]. In general, a CR-manifold will not admit a local
realization in Cn as a CR-tube. On the other hand, as shown by the example of the sphere
S = {z ∈ Cn : |z1|2 + · · · + |zn|2 = 1}, it is not immediate, that S does admit several
affinely inequivalent local tube realizations, see [5].

It is quite obvious that the existence of a CR-tube realization for a given CR-manifold
(M,HM,J) is related to the presence of certain abelian subalgebras v in hol(M), the
Lie algebra of infinitesimal CR-transformations, which are induced by all real translations
z 7→ z + x, x ∈ IRn. It is perhaps a little bit more subtle to give sufficient and neces-
sary conditions for abelian Lie subalgebras of hol(M) to give local CR-tube realization of
M . This has been worked out in [10]. For short, let us call every such abelian subalgebra
a ‘qualifying’ subalgebra of hol(M). Curiously, the notion of locally affine equivalence
among various (germs of) tube realizations for a given M proved to be less appropriate for
the study of CR-manifolds as it is too fine for many applications: Even a homogeneous CR-
manifold may admit an affinely non-homogeneous tube realization, and in such a case the
aforementioned equivalence relation will give rise to uncountable many equivalence classes
of tube realizations. A coarser equivalence relation has been introduced in [10] which seems
to be most natural in the context of CR-tubes. Moreover, it is quite surprising that under cer-
tain assumptions the pure geometric question of globally affine equivalence can be reduced
to the purely algebraic problem of classifying conjugacy classes of certain maximal abelian
subalgebras of hol(M) with respect to a well-chosen group G.

The purpose of this paper is to give a full classification of all local CR-tube realiza-
tions of every hyperquadric

Sp,q =
{
[z] ∈ IP(Cm) : |z1|2 + · · ·+ |zp|2 = |zp+1|2 + · · ·+ |zm|2

}

in the complex projective space IP(Cm), where m := p + q and p, q ≥ 1, applying the
general methods from [10]. The (compact) hyperquadric Sp,q is the unique closed orbit of
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2 Classification of commutative algebras

SU(p, q) ⊂ SL(m,C) acting by biholomorphic transformations on IP(Cm). In this situa-
tion hol(Sp,q) = hol(Sp,q, a) ∼= su(p, q) holds for every a ∈ Sp,q . It is well known and
easy to see that Sp,q is locally CR-equivalent to the affine real quadric in Cr, r := m− 1,

{
z ∈ Cr : Im(zr) =

∑

1≤k<p

|zk|2 −
∑

p≤k<r

|zk|2
}

with non-degenerate Levi form of type (p−1, q−1). Therefore the classification problem
for local tube realizations for both classes is the same, compare also [5], [10], [11], [12],
[13], [14], [20] for partial results in this context.

We have shown in [10] that every abelian subalgebra v ⊂ hol(M), which yields
a tube realization, determines an involution τv : hol(M) → hol(M). For a given hy-
perquadric Sp,q however, it turns out that all arising involutions τv are conjugate in g :=
hol(Sp,q) ∼= su(p, q). We therefore fix an involution τ : g → g (with fixed point set
g τ ∼= so(p, q)) once and for all and reduce the classification of tube realizations to the
algebraic classification of all maximal abelian subalgebras v of g contained in the (−1)-
eigenspace of the non-riemannian symmetric pair (g , τ) up to conjugation by SU(p, q) (in
fact, up to conjugation by the normalizer G of SU(p, q) in SL(m,C), but these two groups
differ only if p = q, and in this case the classification with respect to one group can easily
be derived from the classification up to conjugation with respect to the other). In contrary
to the special case of toral maximal subalgebras (i.e., Cartan subalgebras) t ⊂ g only lit-
tle is known about the general case of arbitrary abelian maximal subalgebras v ⊂ g . The
key point here is that after some reduction procedures the conjugacy class of a maximal
abelian subalgebra v ⊂ g−τ is completely determined by its D-invariant (which is a first
rough invariant of v , determined by its toral part, see (4.14) for more details) and a finite set
of maximal abelian subalgebras n, consisting of ad-nilpotent elements only in su(p, q)
and sl(m,C). Hence, the classification task reduces essentially to the classification of ad-
nilpotent abelian subalgebras n j up to conjugation in SU(p, q), resp. SL(m,C). By our
constructions, to every such n there is associated a finite-dimensional commutative asso-
ciative nilpotent algebra N over IF = IR, resp. IF = C. Our main algebraic result is then
the following

1.1 Theorem. Let G = SU(p, q) or G = SL(m,C) and τ : G → G an involutive
automorphism with Gτ ∼= SO(p, q), resp. Gτ ∼= SO(m,C). For any two maximal abelian
ad-nilpotent subalgebras n1, n2 ⊂ g , contained in the (−1)-eigenspace of τ , the following
conditions are equivalent:

(i) n1 and n2 are conjugate by an element in G,
(ii) n1 and n2 are conjugate by an element in Gτ ,

(iii) the associated algebras N1 and N2 are isomorphic as abstract IF-algebras.

The commutative nilpotent algebras N occurring in the above theorem all have a 1-di-
mensional annihilator. On the other hand, given any nilpotent commutative IF-algebra N
with 1-dimensional annihilator A, we construct an invariant of N which is a certain non-
degenerate symmetric 2-form bπ : N/A × N/A → A. Depending on the type of bπ, the
algebra N gives rise to a maximal abelian subalgebra in g−τ (g and τ as in the preceeding
theorem) and in turn to a tube realization of a hyperquadric.

Summarizing, the classification of all local tube realizations of hyperquadrics is es-
sentially equivalent to the classification of finite-dimensional nilpotent commutative IF-
algebras up to isomorphism. In this paper we give an explicit classification for low values
of p or q, i.e., we carry out all those cases (p, q) where there are only finitely many isomor-
phy classes. The classification in terms of explicit lists seems to be hopeless in the general
case. For big values of p and q there are always uncountable many inequivalent nilpotent
commutative IF-algebras.
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As the algebraic results developed in this paper might be of broader interest, we col-
lect in the Appendix all relevant results concerning the fine structure of nilpotent commu-
tative algebras. These are formulated in a more general setup (e.g. over arbitrary fields of
characteristic zero).

For certain applications one would like to have explicit defining equations for the
various tube realizations, determined by qualifying subalgebras v ⊂ su(p, q). One of our
main geometric results is a procedure which produces for every qualifying v an explicit
defining equation which describes the tube realization iFv ⊕ Vv of Sp,q . In that way we
obtain quite transparent formulae, reflecting the algebraic structure of v .

The paper is organized as follows: In Section 2 we relate our results to existing results
in the literature, in particular to those in [5], [11], [12]. In Section 3 we recall the necessary
tools from [10] and give a short outline of the classification procedure. In particular we
introduce certain abelian subalgebras v ⊂ su(p, q) as qualifying MASAs – these are the
algebraic objects to be classified. In Section 4 we split every MASA v into its toral v red

and its nilpotent part v nil and classify the centralizers of v red. Crucial for the classification
is the decomposition given by Lemma 4.6 that leads to a combinatorial invariant D(v) that
we call the D-invariant of v . For fixed p, q the set Dp,q of all D-invariants of MASAs in
su(p, q) is finite, but still, in general there are infinitely many equivalence classes of MASAs
in su(p, q) with a fixed D-invariant. In Sections 5 and 6 we study MANSAs (maximal
commutative associative nilpotent subalgebras) in su(pj , qj) and sl(mj,C) as these are the
building blocks for general MASAs in su(p, q). In Section 7 we demonstrate briefly how
for every MANSA v ⊂ su(p, q) with corresponding tube realization iF + IRn ⊂ Cn of
Sp,q the base F ⊂ IRn can be written in terms of a canonical equation. In section 9 we
give two examples of MANSAs and in the Appendix 10 we collect several algebraic tools
needed in the paper that might also be of independent interest.

2. Preliminaries
In the following we characterize algebraically the local tube realizations of the hy-

perquadric S = Sp,q ⊂ IPr := IP(Cr+1) with p, q ≥ 1 and r := p+ q − 1, compare (3.3)
in [10]. Since Sp,q and Sq,p only differ by a biholomorphic automorphism of the projective
space IPr it would be enough to discuss the case p ≥ q.

The local tube realizations of S up to affine equivalence in the cases q = 1, 2 were
obtained in the papers [5], [11] respectively by solving certain systems of partial differential
equations coming from the Chern-Moser theory [3]. A classification of the case q = 3 has
been announced in [12], proofs are intended to appear in the forthcoming book [14].

In this paper we give a classification for arbitrary p, q. It turns out that this, after sev-
eral reducing steps, essentially boils down to the classification of abstract abelian nilpotent
real and complex algebras N of dimension r := p+ q − 1 with 1-dimensional annihilator.
For small values of q these can be determined explicitly while for large p, q this appears
to be hopeless. On the other hand, we associate to every local tube realization of Sp,q a
combinatorial invariant D out of a finite set Dp,q in such a way that for any two local tube
realizations the equations for the corresponding tube bases F, F̃ ⊂ IRr are essentially of
the same type (up to some polynomial terms in the coordinates of IRr coming from the
aforementioned different abelian nilpotent algebras arising naturally in this context).

To compare this with the known results in case q ≤ 3 let us introduce the number
n := r− 1 = p+ q− 2, so that every local tube realization T of S = Sp,q is a hypersurface
in Cn+1 with CR-dimension n, and r is the rank of the Lie algebra hol(S). Let furthermore
cp,q be the cardinality of all affine equivalence classes of closed tube submanifolds in Cr

that are locally CR-equivalent to S.
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In case q = 1, that is the case of the standard sphere in Cp, [5] implies cp,1 = p+2 = n+3.
In case p ≥ q = 2 we have n = p and the explicit list of tube realizations in [11] implies
the estimate cp,2 ≤ p(p+ 9)/2. Our considerations will give

(2.1) cp,2 = 5p+ k(p− k)− δp,2 with k := dp/2e ,

where for every t ∈ IR the ceiling dte is the smallest integer ≥ t and δ is the Kronecker
delta. Therefore, the list in the Theorem of [11] p. 442 must contain repetitions. Indeed, in
type 7) for every s the parameters t and t̃ := n − 2 + s − t give affinely equivalent tube
realizations. The same holds in case p = 2 for s = 1 in type 1) and s = 0 in type 2).
In case p ≥ q = 3 it has been announced in [12] that cp,3 is finite if and only if p ≤ 5.

In case p, q ≥ 4 we show that cp,q always is infinite. Except for c4,4, this has already
been announced in [12].

3. The algebraic setup
For fixed p, q ≥ 1 with m := p + q ≥ 3 let E ∼= Cm be a complex vector space and

h : E×E→ C a hermitian form of type (p, q) (p positive and q negative eigenvalues). Since
any two hermitian forms of the same type on E are equivalent (up to a positive multiplicative
constant) with respect to the group L := SL(E) ∼= SL(m,C) it does not matter which h has
been chosen above. More important for computational purposes is to choose a convenient
vector basis ofE in such a way that the corresponding matrix representation of h is optimally
adapted.

The complex Lie group L acts in a canonical way transitively on the complex projec-
tive space Z := IP(E) with finite kernel of ineffectivity (the center of L). The subgroup

(3.1) G := {g ∈ L : h(gz, gz) = ±h(z, z) for all z ∈ E}

is a real Lie group with (1 + δp,q) connected components acting transitively on the hyper-
surface

S = Sp,q := {[z] ∈ IP(E) : h(z, z) = 0} .
We write for the corresponding Lie algebras

l = sl(E) and g := su(E, h) = {ξ ∈ l : Reh(ξz, z) = 0 for all z ∈ E} .

As a matter of fact, l coincides with the complex Lie algebra hol(Z) of holomorphic vector
fields on Z. Further, for every a ∈ S the canonical inclusions g ↪→ hol(S) ↪→ hol(S, a)
turn out to be isomorphisms, and therefore we identify hol(S) with g . With σ : l → l we
denote the antilinear involutive Lie automorphism with Fix(σ) = g .

The hyperquadric S = Sp,q satisfies the assumptions of Theorem 7.1 in [10], and the
various tube realizations are, up to the global affine equivalence as defined in [10] Definition
6.1, in a 1-1-correspondence to Glob(S, a)-conjugacy classes of certain abelian subalgebras
in hol(S, a) (see [10] for the definition of Glob(S, a) and its basic properties). In the case
under consideration Glob(S, a) = Ad(G) ⊂ Aut(hol(S, a)) for every a ∈ S; our task then
will be to classify up to the action of Ad(G) = Ad(NL(g)) on l all σ-invariant abelian
subalgebras e ⊂ l which have an open orbit in Z. Every such e automatically has complex
dimension r := m−1 and is maximal abelian in l by Lemma 2.1 in [10].

Every involution τv : (S, a) → (S, a) extends to a global involution τ̂v : Z → Z.
Moreover, any two such involutions are conjugate by an element ofG (even of the connected
identity component SU(E, h) ofG), compare [10]. The search can therefore be restricted by
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fixing once and for all an involution τ of S whose fixed point set Sτ = Fix(τ) is not empty
and has dimension r− 1. Such a τ has a unique extension to an antiholomorphic involution
of IP(E) that comes from a conjugation E → E, z 7→ z, that is, τ [z] = [z] for all [z] ∈ S.
By our results it is enough to classify up to conjugation by G all abelian Lie subalgebras
v ⊂ g−τ with εa(v) = T−τ

a S for a given point a ∈ S. These v are automatically maximal
abelian in g ∼= su(p, q) and have dimension r = m−1 = rank(g).

3.2 Setup For the rest of the paper we fix the following notation: For p, q and m =
p + q as above, E is a complex vector space of dimension m with (positive definite) inner
product (z|w) (complex linear in the first and antilinear in the second variable). Further-
more, τ : E→ E, z 7→ z, is an (antilinear) conjugation on E with (z|w) = (w|z) for all
z, w ∈ E. With the same symbol τ we also denote the induced antiholomorphic involution
of Z = IP(E) as well as of the complex Lie algebra l := sl(E) = hol(IP(E)). In addition,
(ej)1≤j≤m is an orthonormal basis of E with ej = ej for all j, and the hermitian form
h = hp,q on E is given by

(3.3) h(ej , ek) = ϑp,jδj,k with ϑp,j :=
{ 1 if p ≥ j
−1 otherwise .

The involution τ on Z leaves the hyperquadric S = Sp,q invariant. Therefore also g =
su(p, q) = hol(S) is invariant under the involution τ of l . As before, σ is the involution of
l defining the real form g of l . Clearly, the involutions σ, τ commute on l .

SU(E, h) = SU(p, q) is the connected identity component G0 of the group G defined
in (3.1). Only in case p = q the group G is disconnected and then

(
0 11
−110

) ∈ SL(2p,C) is
contained in the second connected component of G.

With End(E) we denote the endomorphism algebra of E, a unital complex associative
algebra with involution g 7→ g∗ (the adjoint with respect to the inner product). With respect
to the Lie bracket [f, g] = fg − gh it becomes a reductive complex Lie algebra that is
denoted by gl(E) and contains sl(E) as semisimple part. For every z, w ∈ E we denote by
z ⊗ w∗ ∈ gl(E) the endomorphism x 7→ (x|w)z. Then (z ⊗ w∗)∗ = w ⊗ z∗ is obvious.
We also consider adjoints with respect to h and write g? for the endomorphism satisfying
h(gw, z) = h(w, g?z) for all w, z ∈ E.

3.4 The task Let G, g , l = sl(E), σ be as before and let a compatible conjugation τ :
l → l be fixed once and for all, induced by z 7→ z on E. In order to classify all local tube
realizations of S = Sp,q up to globally affine equivalence (compare Section 6 in [10]) we
have to classify all abelian subalgebras v ⊂ g = hol(Sp,q) = su(p, q) up to conjugation
with respect to Ad(G) which have the following property:

(A) The complexification vC has an open orbit in Z = IP(E), that is, εa(vC) = TaZ for
some a ∈ Z (and hence even for some a ∈ S).

This condition, justified by Proposition 4.2 in [10], is of geometric nature but implies the
following purely algebraic properties:

(B) v is maximal abelian in g – we call every such subalgebra a MASA in g .
(C) dim v = rank g = dimZ (= r := m− 1).
(D) Ad(g)(v) ⊂ g−τ for some g ∈ G.

Instead of classifying all G-conjugation classes of v with property (A) we classify more
generally the classes of v satisfying (B) and (D), let us call them qualifying MASAs in
g for the following. It will turn out a posteriori that these v automatically satisfy (A) and
hence also (C).

3.5 A short outline of the classification procedure We proceed by analyzing the alge-
braic structure of maximal abelian subalgebras v ⊂ g . We will need some well known facts
from the structure theory of semisimple Lie algebras (we refer to [17] and [21] as general
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references). Write

Na (b) : = {x ∈ a : [x, b ] ⊂ b} for the normalizer and
Ca (b) : = {x ∈ a : [x, b ] = 0} for the centralizer

of any subalgebra b in a Lie algebra a . Also let Z(a) := Ca (a) be the center of a . The
classification idea is based on the observation that each maximal abelian v ⊂ g ⊂ End(E)
has a unique decomposition into toral and nilpotent part, i.e., v = v red⊕ v nil, where v red

consists of semisimple and vnil of nilpotent elements in End(E). Each toral subalgebra, in
particular v red of a qualifying MASA v , gives rise to the real reductive subalgebraCg (v red).
On the other hand, the maximality of v implies that v red = Z(Cg (v red)). Hence, there is a
natural bijection between [theG-conjugacy classes of] toral parts v red of qualifying MASAs
v and [the G-conjugacy classes of] certain reductive subalgebras Cg (v red). A particular
class of qualifying MASAs is formed by those v -s for which v nil = 0, i.e., v is a real
Cartan subalgebra of g . It turns out that each of the min{p, q}+1 conjugacy classes (with
respect to G0 - or equivalently to G) of real CSAs has qualifying representatives.

It is well-known that general centralizers of tori in complex semisimple Lie algebras
can be characterized by subsets of simple roots. In our case however we have to classify real
centralizers. An additional complication is that not all (conjugacy classes of) centralizers of
tori are of the form Cg (v red) with a qualifying MASA v . In the first part of our classifica-
tion we provide a combinatorial tool giving an explicit characterization of these conjugacy
classes of centralizes which are related to qualifying MASAs.

The nilpotent part vnil of a qualifying MASA is contained in the semisimple part of
Cg (v red), more precisely, we have the following diagram:

(3.6)

v = v red ⊕ vnil

∩ ‖ ∩
Cg (v red)−τ = Z(Cg (v red))⊕ Css

g (v red)−τ .

Moreover, v nil is a maximal abelian and nilpotent subalgebra of Css
g (v red) – we call such

subalgebras MANSAs. An important observation is that the simple factors occurring in
Css

g (v red) are not arbitrary real forms ofCl (v red): A simple factor inCss
g (v red) is isomorphic

either to su(p′, q′) or slm(C). Consequently, vnil is a product of qualifying MANSAs in
su(p′, q′) and slm(C). The classification of the last mentioned Lie subalgebras turns out
to be equivalent to the classification of arbitrary real or complex associative commutative
nilpotent algebras N with 1-dimensional annihilator.

We will analyze the consequences of condition (C) later on; one outcome is that
dim vnil = rank(Css

g (v red)), hence dim v = rank g and each such vC has an open or-
bit in Z. Summarizing, our task then is reduced to the solution of the following algebraic
problems:

[R] Classify up to conjugation all reductive subalgebras r ⊂ g which are centralizers of
the reductive part of a qualifying MASA v ⊂ g (compare 3.4).

[N] Given a τ -stable reductive subalgebra r = Z(r) ⊕ r ss of the above type, classify up
to conjugation all maximal abelian nilpotent subalgebras n of r ss with n ⊂ (r ss)−τ .

4. Classification of the centralizers Cg ( v red )
4.1 Qualifying Cartan subalgebras. Particular examples of MASAs v ⊂ g are maximal
toral subalgebras, i.e., Cartan subalgebras. This is precisely the case when v = v red and
vnil = 0. It is well-known that su(p, q) (with q ≤ p) has q + 1 G0–conjugacy classes
of real Cartan subalgebras. We need to know that each such conjugacy class contains a
qualifying MASA of g :
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4.2 Lemma. (Maximal toral subalgebras) Let g , τ and S = Sp,q with p ≥ q be as before.
Then:

(i) Every complex Cartan subalgebra of sl(E) has an open orbit in IP(E).
(ii) Every G0-conjugacy class of real Cartan subalgebras in g has a representative con-

tained in g−τ .
(iii) To every maximal abelian subalgebra v ⊂ g−τ there exists a real Cartan subalgebra

h of g and a g ∈ G with Ad(g)(v red) ⊂ h ⊂ g−τ .
Proof. (i) is an easy consequence of the fact that there is only one conjugacy class of
complex CSAs in sl(E) and that the subspace of all diagonal matrices in sl(E) is one of
them. For the proof of (ii) fix an arbitrary real CSA h of g . Then hC is a complex CSA of
sl(E) and hence has an open orbit in IP(E). Therefore, by Propositions 4.2 and 3.2 in [10],
there is a point a ∈ S and an involution θ of (S, a) with h ⊂ g−θ. Also, θ satisfies (3.1) in
[10] and extends to an antiholomorphic involution of IP(E). Therefore τ = gθg−1 for some
g ∈ G0, that is, Ad(g)(h) ⊂ g−τ . Below, we also give an alternative, algebraic proof of
(ii) without referring to results from [10]. Assertion (iii) follows from (ii) since there exists
a CSA h of g with v red ⊂ h .

Every toral subalgebra t ⊂ g ⊂ End(E) has a unique decomposition t = t+⊕ t−
into its compact and its vector part, that is, all elements in t+ (t− respectively) have imag-
inary (real respectively) spectrum as operators on E. Clearly the dimensions of these parts
are invariants of theG-conjugacy class of t in g , and in the case of a semisimple Lie algebra
g of Hermitian type, (as for instance su(p, q)) dim t+ determines uniquely its conjugacy
class. For later use we construct explicitly for every ` = 0, 1, . . . , q a CSA `h of g with
`h ⊂ g−τ and ` = dim(`h−) .

4.3 Diagonal bases. Consider on the integer interval {1, 2, . . . ,m} the reflection defined
by j 7→ j• := m+1−j and recall the choice of the orthonormal basis (ej)1≤j≤m and of
ϑp,j as in (3.3). Fix an integer ` with 0 ≤ ` ≤ q, a complex number ω with 2ω2 = i and
define a new orthonormal basis (`fj)1≤j≤m of E by

`fj :=
{
ej if ` < j < `•

ωej + ωej• otherwise , for which ej =
{ `fj if ` < j < `•

ω `fj + ω `fj• otherwise

is easily verified. Then for all 1 ≤ j ≤ k ≤ m we have

(4.4) h(`fj ,
`fk) =

{
iδj,k• if j ≤ `
ϑp,jδj,k if ` < j < `• .

Let `h ⊂ g = su(E, h) be the abelian subalgebra of all endomorphisms that are diagonal
with respect to (`fj). From

`fj ⊗ `f∗j + `fj• ⊗ `f∗j• = ej ⊗ e∗j + ej• ⊗ e∗j•
`fj ⊗ `f∗j − `fj• ⊗ `f∗j• = iej ⊗ e∗j• − iej• ⊗ e∗j .

for all j ≤ ` we derive that the decomposition `h =` h+⊕ `h− into compact and vector
parts is given by

(4.5)

`h− =
⊕

j≤`

iIR
(
ej ⊗ e∗j• − ej• ⊗ e∗j

)

`h+ =
( ⊕

j≤`

iIR
(
ej ⊗ e∗j + ej• ⊗ e∗j•

) ⊕
⊕

`<j<`•
iIR(ej ⊗ e∗j )

)
tr=0

.

As a consequence, `h = Cg (`h) is a CSA of g with dim(` h−) = ` and `h ⊂ g−τ . This
gives a constructive proof for (ii) in Lemma 4.2.
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4.6 The general case v red ⊂ v . We proceed to the general case where Cg (v red) may
contain v red properly, that is vnil 6= 0. Given v red, or equivalently Cg (v red), after conjugat-
ing with an element of SU(E, h) we may assume that v red ⊂ ` h ⊂ g−τ for some ` ≤ q as
above. In the complex situation, (i.e., for the centralizer in gC , or equivalently in gl(E)) it
is well known that there is a unique direct sum decomposition with summands E 6= 0

(4.7) E =
⊕

∈J
E such that Cgl(E)(v

red) =
⊕

∈J
gl(E) .

The subspaces Ej correspond to joint eigenspaces of the toral abelian subalgebra v red ⊂
sl(E) with respect to certain functionals γ ∈ (v red)∗. Since v red, and in turn Cl (v red) is
invariant under the conjugation τ , we conclude that there is an involution  7→  of the index
set J with τE = Ē for all  ∈ J . One key point here is that for every  ∈ J the restriction
h of h to E +Ē is non-degenerate while in case ̄ 6=  the spaces E and Ē are totally h–
isotropic and have zero intersection. (A priori, the non-degeneracy of the restrictions h does
not follow from the mere τ–invariance of the decomposition E =

⊕
E. However, since

v red ⊂ `h for some `, one can show using root theory that every subspace E ⊂ E occurring
in the above decomposition is invariant under every orthogonal projection `fk⊗ `f∗k , k ∈ J .
With 4.4 then the non-degeneracy of h follows).
4.8 Restrictions of σ and τ to the simple factors of the centralizer. Choose a subset
L ⊂ J such that J = K ∪ L ∪ L is a disjoint union for K := { ∈ J : ̄ = }. For every
 ∈ K the subalgebra sl(E) ⊂ sl(E) is invariant under τ as well as σ, that is

sl(E)σ = su(E, h) sl(E)τ = sl(Eτ
 )

(with su(E, h) = 0 = sl(E) in case dimE = 1). Also, for every  ∈ L we have
Ē = τ(E), σ(sl(E)) = τ(sl(E)) = sl(Ē) and σ, τ ∈ AutIR(sl(E) ⊕ sl(Ē)) are
given by

τ(x, y) = (τyτ , τxτ) and σ(x, y) = (−y?,−x?) ,

where x?, y? are the adjoints of x, y with respect to the hermitian form h. The symmetric
complex bilinear form β : E × E → C defined by β(x, y) = h(x, τy) is non-degenerate
and

(4.9)
(
sl(E)⊕ sl(Ē)

)σ ∼= RC
IR

(
sl(E)

) (
sl(E)⊕ sl(Ē)

)στ ∼= RC
IR

(
so(Em ,C)

)
,

where RC
IR is the forgetful functor restricting scalars from C to IR. With these ingredients

we can state:
4.10 Lemma. For the decomposition (4.7) we have

v red = Z(Cg (v red)) =
( ⊕

K∪L
iIR idE+Ē

)
tr=0

⊕
⊕

L
IR(idE − idĒ)

Css
g (v red) =

⊕

K
su(E, h)⊕

⊕

L

(
sl(E)⊕ sl(Ē)

)σ

∼=
⊕

K
su(p, q)⊕

⊕

L
sl(m,C) ,

where m = dim(E) and (p, q) for  ∈ K is the type of the restriction h on E. If
v red ⊂ `h for a Cartan subalgebra as in (4.5) then each E is spanned by some of the
vectors in the basis (`fj). For each fixed g ∼= su(p, q) there are only finitely many G0-
conjugacy classes of centralizers Cg (v red) as v ⊂ g varies through all qualifying MASAs
in g .
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For the sake of clarity let us mention that in general there are infinitely many con-
jugacy classes of qualifying MASAs v while the above Lemma asserts that there are only
finitely many conjugacy classes of the corresponding toral parts v red. The point here is
that for a fixed v red there may be infinitely many non-conjugate qualifying MANSAs in
Cg (v red)ss .

The above lemma describes the structure of v red and its centralizer Cg (v red) in an
elementary-geometric way and shows that both determine each other uniquely. For the de-
scription of v = v red⊕ v nil it is therefore enough to determine all possible vnil. These split
into a direct sum

(4.11)

vnil =
⊕

K∪L
n  with

n  : = v nil ∩ s j for s  :=

{
su(E, h)  ∈ K(
sl(E)⊕ sl(Ē)

)σ
 ∈ L .

Every n  is an abelian ad-nilpotent subalgebra of s . In case  ∈ K the algebra n  has
dimension p + q − 1. As a consequence, p = 0 is possible only if q = 1 (since in case
q > 1 the form h is definite and every ad-nilpotent element in s  is zero). In the same way
q = 0 implies p = 1. In case  ∈ L the algebra n  has dimension 2m − 2.

Before we turn to the corresponding classification result we need to extract some
invariants from the equations in 4.10. For every setA denote by F(A) the free commutative
monoid over A. We write the elements of F(A) in the form

∑
α∈A nα·α with nα ∈ IN

and
∑

A nα < ∞. Here we use the free monoids over the following sets, where IN =
{0, 1, 2, . . . .}:

(4.12)
K : = {(s, t) ∈ IN2 : (st = 0) ⇒ (s+ t = 1)} ,
L : = IN\{0} and J := K ∪L .

Then D := F(J) = F(K) + F(L) ,

and the permutation of J defined by (s, t) 7→ (t, s) on K and the identity on L induces
an involution D 7→ Dopp of D. As an example, the opposite of D = 4·(3, 5) + 2·7 is
Dopp = 4·(5, 3) + 2·7. Notice that 2·7 and 7·2 are different elements in F(L) ⊂ D.
The set J can be considered in a canonical way as subset of F(J) by identifying j ∈ J
with 1·j ∈ D, but for better distinction we write j instead of 1·j only if no confusion is
likely. Also, for better distinction we write the natural numbers in IN\{0} in boldface if we
consider them as element of L.

4.13 Definition. For every p, q ∈ IN we denote by Dp,q ⊂ D the subset of all

D =
∑

j∈J

nj ·j ∈ F(J) satisfying

p =
∑

j=(s,t)∈K

njs+
∑

j∈L

njj and q =
∑

j=(s,t)∈K

njt+
∑

j∈L

njj ,

where j is the natural number underlying j. Then Dopp
p,q = Dq,p and Dp,q + Dp′,q′ ⊂

Dp+p′,q+q′ are obvious.

To every qualifying MASA v ⊂ su(p, q) we associate an element D(v) of D that
only depends on the SU(p, q)-conjugation class of v and is called the D-invariant of v :
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Suppose that v (after a suitable conjugation) gives rise to the equations (4.7) and (4.10).
Then just put

(4.14) D(v) :=
∑

∈K
1·(p, q) +

∑

∈L
1·m .

For instance, the CSAs in g = su(p, q) are precisely the qualifying MASAs v ⊂ g with
D(v) ∈ F(A) with A := {(1, 0), (0, 1),1}. Indeed, in the notation of (4.5) we have
D( `h) = (p− `)·(1, 0) + (q − `)·(0, 1) + `·1.

The relevance of the D-invariants for our classification problem is demonstrated by
the following two results. Recall that G = NSL(p+q,C)(su(E, hp,q)) and G0 = SU(E, hp,q)
with G 6= G0 only if p = q.

4.15 Proposition. D ∈ D is the D-invariant of a qualifying MASA v in su(p, q) if and
only if D ∈ Dp,q .

4.16 Proposition. Let v1, v2 be two qualifying MASAs in g = su(p, q). Then the toral
parts v red

1 , v red
2 (and hence also the corresponding centralizers) are G0-conjugate in g if and

only if D(v1) = D(v2). In case p = q the toral parts v red
1 , v red

2 are G-conjugate if and only
if D(v1) = D(v2) or D(v1) = D(v2)opp (in this case SU(E, hp,q) has index two in G).

Our classification problem now reduces to the following task: For every p, q ≥ 1 with
p+q ≥ 3 and every D in the finite setDp,q determine allG-conjugacy classes of qualifying
MASAs v ⊂ su(p, q) with D(v) = D.

4.17 Explicit classification for small values of q: For Dp,q in the cases p ≥ q = 1, 2 we
have the following explicit lists (without repetitions).
Dp,1 consists of all invariants

(i) (p− s)·(1, 0) + (s, 1) for s = 1, 2, . . . , p.
(ii) (p− 1)·(1, 0) + 1 and p·(1, 0) + (0, 1).

Dp,2 consists of all invariants
(iii) 1 +Dp−1,1,
(iv) (p− s− t)·(1, 0) + (s, 1) + (t, 1) for all 1 ≤ s ≤ t with s+ t ≤ p ,
(v) (p− s)·(1, 0) + (s, 2) , (p− s)·(1, 0) + (0, 1) + (s, 1) for 1 ≤ s ≤ p ,

(vi) (p− 2)·(1, 0) + 2 , p·(1, 0) + 2·(0, 1) .
Notice that in D2,2 there exists an invariant that is not self-opposite, e.g. (1, 0) + (1, 2).
As a consequence, in case g ∼= su(2, 2) there are eleven SU(2, 2)-conjugation classes of
centralizers in contrast to the only ten G-conjugation classes in this case.

4.18 Nilpotent parts of qualifying MASAs. So far we have given a description of con-
jugacy classes of the toral parts v red of qualifying MASAs in g . For the description of v =
v red⊕ vnil it is therefore sufficient to determine all possible nilpotent parts vnil. According
to 3.5, each such vnil is a maximal abelian nilpotent subalgebra (MANSA) of Css

g (v red),
compare (3.6). On the other hand, given any qualifying MASA v ⊂ g , each MANSA n
of Css

g (v red) in the −1-eigenspace of τ gives rise to a qualifying MASA vn := v red⊕ n
in g . Given one of the finitely may conjugacy classes of centralizers CD with D ∈ Dp,q ,
our task is therefore to classify the MANSAs in the semisimple part Css

D of CD . As already
explained, Css

D decomposes uniquely into simple ideals g , each of them being isomorphic
either to su(p, q) or to slm(C). Consequently each qualifying MANSA n ⊂ Css

D has the
unique decomposition n =

⊕
J1

n  with J1 := { ∈ K ∪ L : dimE > 1} ⊂ J , compare
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4.10. Each of the factors n  is a qualifying MANSA in g , more precisely:

(4.19)

Cg (v red) = CD = v red ⊕
⊕

J1

g 

∪ ‖ ∪
vn = v red

n ⊕
⊕

J1

n 

g 
∼= su(p, q)

or

g 
∼= RC

IR(sl(m,C)) .

Summarizing the results of the present subsection, our next task is to determine max-
imal abelian ad-nilpotent subalgebras n  ⊂ g  with either g  = su(E, h) ∼= su(p, q)
or g  = (sl(E) ⊕ sl(E))σ ∼= RC

IR(slm(C)). Here we can restrict to subalgebras that
are contained in the (−1)-eigenspace of an involution τ coming from a conjugation on the
vector spaces E and E ⊕ E respectively. In the following we discuss the cases sl(E)σ =
su(E, h) ∼= su(p, q) and

(
sl(E)⊕ sl(E)

)σ ∼= sl(m,C) separately.

5. MANSAs in su (p, q)−τ

For notational simplicity let us drop the subscript  for the rest of this section and
write E = Ej as well as (p, q) = (p, q) for the type of the restriction of h to E and
also g = su(E, h). As before we denote by σ the conjugation on the complexification
gC = sl(E) with Fix(σ) = g . For every z ∈ End(E) we denote by z? ∈ End(E) the
adjoint with respect to h.

Without loss of generality we assume pq 6= 0, since otherwise p + q = 1 and thus
su(E, h) = 0, see (4.12). As before, m = p+ q and r = m− 1.

In order to classify the maximal nilpotent Lie subalgebras n = vnil ⊂ su(E, h) we
relate them to nilpotent commutative and associative IR-algebras, see the Appendix for the
terminology.

5.1 Proposition. Let n ⊂ g = su(E, h) be a Lie subalgebra. Then the following conditions
are equivalent:

(i) n is maximal among all abelian Lie subalgebras a of g such that every element of a
is a nilpotent endomorphism of E.

(ii) n is maximal among all abelian subalgebras of g that are ad-nilpotent in g .
(iii) The complexification nC is σ-stable and is maximal among all abelian and nilpotent

associative subalgebras of End(E).
If these conditions are satisfied then nC⊕ C idE is a maximal abelian subalgebra of the
complex associative algebra End(E). Further, in the notation of 9.3 ff. for every n ⊂ g
satisfying one (and hence all) of the conditions (i) - (iii) the following holds:

(iv) The subspaces KnC and BnC are h-orthogonal in E, implying d1 = d3.
(v) There exists an nC-adapted decompositionE1⊕E2⊕E3 ofE such thatE1 andE3 = K

are h-isotropic and E2 ⊥h (E1 ⊕ E3). If, in addition, n is τ -stable then the adapted
decomposition can be chosen to be τ -stable, too. The restriction of h to E2 is of type
(p− d1, q − d1).

Now the conjugation τ of E comes into play. For V := Eτ ∼= IRm we have E = V ⊕ iV,
and we identify End(V) in the obvious way with the real subalgebra End(E)τ of End(E).
A crucial observation is the following refinement of Proposition 9.7.

5.2 Proposition. Assume that n ⊂ su(E, h)−τ is maximal among abelian and ad-nilpotent
subalgebras of su(E, h). As before, let N := i n ⊂ End(E). Then, with the notation of
Proposition 9.7, the following holds:
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(i) dimAnn(N ) = 1. In particular, dimV1 = dimV3 = 1 for any N-adapted decom-
position of V.

(ii) Fix generators v1 ∈ V1 and v3 ∈ V3 with h(v1, v3) = 1. This yields canonical
identifications V1 = IR = V3, Ann(N ) = IR, N21 = Hom(IR,V2) = V2 and
N32 = Hom(V2, IR) = V∗2 (the dual of V2). The map J : V2 → V∗2 is given
by J(y)(x) = h(x, y) for all x, y ∈ V2. With all these identifications the matrix
presentation in Proposition 9.7 reads

N =








0 0 0
y N(y) 0
t J(y) 0


 : y ∈ V2, t ∈ IR



 ⊂ S(V, h) ⊂ End(E) ,

where S(V, h) ⊂ End(V) is the linear subspace of all h-selfadjoint operators on V.
(iii) The restriction of h to V2 has type (p − 1, q − 1) and N(y) ∈ S(V2, h) for every

y ∈ V2.

Proof. (ii): From 5.1 and 9.7.(ii) follows that for a maximal abelian and ad-nilpotent sub-
algebra n ⊂ su(E, h) we have Ann(i n) = {x ∈ Ann(nC) = Hom(E1,E3) : x = x?}.
Since at the same time n is contained in the (−1)-eigenspace of τ the first part of the lemma
together with 9.7.(ii) imply Ann(i n) = Hom(V1,V3) = Hom(E1,E3)τ . This is only pos-
sible if dimE1 = dimE3 = 1.

The next proposition shows that the classification of maximal nilpotent subalgebras
n ⊂ su(E, h), contained also in sl(E)−τ , reduces to the classification of abstract associative
nilpotent subalgebras (of End(E)) with 1-dimensional annihilator. Crucial for the following
theorem is the construction of a non-degenerate 2-form b = bπ depending on a suitable
projection π, see 9.12. Keeping also in mind Proposition 9.10 and Lemma 9.14 we have:

5.3 Theorem. LetN be an arbitrary commutative associative and nilpotent IR-algebra with
dimAnn(N ) = 1 and let V := N 0 be its unital extension. Fix an identification Ann(N ) =
IR and a projection π on V with range Ann(N ) = IR satisfying π(11) = 0. Then for the left
regular representation L of V = N 0 and the symmetric real 2-form b : V × V → IR we
have:

(i) L(N ) is a maximal nilpotent and abelian subalgebra of End(V) contained in S(V, b).
(ii) Let E := V ⊕ iV be the complexification of V and τ the conjugation on E with

Eτ = V. Furthermore, denote the unique hermitian extension of b to E × E by the
same symbol b. Then n := iL(N ) is a subset of su(E, b)−τ and is a maximal abelian
and ad-nilpotent Lie subalgebra of su(E, b). Finally, exp nC ⊂ SL(E) has an open
orbit in IP(E).

(iii) Every maximal abelian and ad-nilpotent subalgebra of su(E, h) which is also con-
tained in sl(E)−τ for τ as in 3.2 is equivalent to some iL(N ) as above.

Suppose that for k = 1, 2 there are given two abelian nilpotent associative IR-algebras
Nk each with 1-dimensional annihilator Ak and assume that the corresponding 2-forms
bk on the corresponding unital extensions have types (pk, qk) with respect to the linear
isomorphisms λk : Ak

∼= IR. Then for I := {(x, y) ∈ A1 ⊕ A2 : λ1(x) = λ2(y)}
the quotient algebra N := (N1 ⊕N2)/I is an abelian nilpotent associative algebra with
1-dimensional annihilator A := (A1 ⊕A2)/I, and the 2-form b on N induced by b1 × b2

on N1 ×N2 has type (p1 + p2 − 1, q1 + q2 − 1).

5.4 MANSAs in su (p, q) for low values of q. By our above considerations, to determine
all MANSAs n ⊂ su(p, q) up to SU(p, q)-conjugacy it is equivalent to determine up to
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isomorphism all real nilpotent abelian associative algebras N with annihilator A such that
for some linear isomorphism A ∼= IR the form b has type (p, q) on N 0. For low values of q
this can be done:

q = 1: There is precisely 1 equivalence class of MANSAs in su(p, 1)−τ for every p ≥ 1.
Indeed, for everyN with annihilatorA ∼= IR the factor algebraN/Amust be a zero product
algebra.

q = 2: There are precisely min(p, 3) equivalence classes of MANSAs in su(p, 2)−τ for
every p ≥ 1. Representing algebras N are obtained as follows: For every n ≥ 1 with
n ≤ min(p, 3) let N1 be the cyclic abelian algebra of dimension n, compare Example
9.40, and identify t ∈ IR with tξn in the annihilator A1 of N1. Then the corresponding
form b1 has type (1, 1), (2, 1), (2, 2) for n = 1, 2, 3 respectively. Next choose an abelian
nilpotent algebra N2 with 1-dimensional annihilator A2 such that the construction N :=
N1 ⊕ N2/I as above leads to a nilpotent algebra with 1-dimensional annihilator A such
that the corresponding 2-form b onN 0 has type (p, 2). This is always possible sinceN2/A2

must be a zero product algebra.

6. MANSAs in sl (m, C)
In this section we deal with the simple factors g

∼= sl(m,C) in (4.10). We retain our
convention from the last section and drop the index  from our notation, that is, we consider
abelian nilpotent subalgebras of End(E) that are contained in g = sl(m,C), where the
latter space is considered as a real Lie algebra. Recall that in this case the restriction of the
involution τ to g is given by the map x 7→ −x′, where x′ is the adjoint with respect to the
complex bilinear non-degenerate symmetric 2-form β given by β(v, w) := h(v, τw) for all
v, w ∈ E, compare (4.9). Note that the complexification gC is isomorphic to the product
sl(m,C)× sl(m,C).
6.1 Proposition. Let g = RC

IR(sl(E)) and let n ⊂ g be a Lie subalgebra. Then the follow-
ing conditions (i) – (iii) are equivalent:

(i) n is maximal among ad-nilpotent and abelian IR-subalgebras of sl(E).
(ii) n is maximal among all abelian C-subalgebras of sl(E) that are ad-nilpotent in sl(E).

(iii) n is maximal among abelian and nilpotent subalgebras of the associative complex
algebra End(E).

If these conditions are satisfied, then nC ⊕ C· idE is a maximal abelian subalgebra of the
complex associative algebra End(E). Furthermore we have:

(iv) Let n be maximal among ad-nilpotent and abelian C-subalgebras of sl(E) contained
in sl(E)−τ . Then dimAnn(n) = 1, i.e., 1 = dimE1 = dimE3 for any n -adapted
decomposition of E (dimensions over C).

(v) Identifying C = E1 = E3 = Ann(n), the matrix presentation in Proposition 9.7
reads

N =








0 0 0
y N(y) 0
t J(y) 0


 : y ∈ E2, t ∈ C



 ⊂ S(E, β) ⊂ End(E) ,

where S(E, β) ⊂ End(E) is the linear subspace of all β-selfadjoint operators on E.
Proof. (iv): Proposition 9.7 implies that Ann(n) = Hom(E1,E3) for a given n -adapted
decomposition of E. On the other hand, n is also contained in sl(E)−τ , i.e., x = x′ for all
x ∈ sl(E). Hence, we can choose an n -adapted decomposition E = E1⊕E2⊕E3 such that
E1 and E3 are β-isotropic and (E1⊕E3), E2 are β-orthogonal. In the matrix presentation of
n as in Proposition 9.7 the two above conditions imply Ann(n) = Hom(E1,E3) = {x ∈
Hom(E1,E3) : x = x′}. This is only possible if dimE1 = dimE3 = 1 = dim Ann(n).

Similar to Theorem 5.3 we have



14 Classification of commutative algebras

6.2 Theorem. Let N be an arbitrary associative C-algebra which is commutative nilpotent
and has annihilator Ann(N ) of dimension 1. Let furthermore π be an arbitrary (complex
linear) projection on its unital extension E := N 0 with range Ann(N ) and π(11) = 0, and
fix an identification Ann(N ) = C. Then L(N ) is maximal in the class of all nilpotent and
abelian subalgebras A ⊂ End(E) which are contained in S(E, b)tr=0 = sl(E)−τ . Here
b = bπ is as in 9.12, x′ is the adjoint with respect to the complex bilinear 2-form b and
τ : End(E) → End(E) is given by x 7→ −x′. On the other hand, every maximal abelian
and ad-nilpotent subalgebra of sl(E) which is also contained in sl(E)−τ for τ as in 4.9 is
equivalent to some L(N ) as above.

Note that the complex nilpotent group NC , corresponding to nC ∼= n × n ⊂ sl(E) ×
sl(E) ∼= (sl(E))C does not have an open orbit in IP(E⊕E), but the subgroup corresponding
to the following subalgebra does

(n × n)⊕ C(id,− id) = (vnil)C ⊕ (v red)C ⊂ Csl(E⊕E)(v
red) ⊂ sl(E⊕ E) .

MANSAs in sl(m, C) for low values of m. There exist exactly 1,1,1,2,3 equivalence
classes of qualifying MANSAs in sl(m,C) for m = 1, 2, 3, 4, 5 (see also the more detailed
description at the end of the following Section 7). With our construction of nilpotent alge-
bras out of cubic forms c in case IF = C (compare Proposition 9.36) it follows that there are
infinitely many equivalence classes of qualifying MANSAs in sl(m,C) for every m ≥ 8.

7. Normal forms for equations
Every local tube realization TF = V + iF ⊂ E := V ⊕ iV of Sp,q is characterized

by a qualifying MASA v ⊂ su(p, q). In addition, the base F of the tube can always be
chosen to be a closed (real-analytic) hypersurface in the real vector space V , see [10]. In the
following we want to find canonical real-analytic real valued functions ψ on V with dψ 6= 0
everywhere such that F = {x ∈ V : ψ(x) = ψ(0)}0, where the upper index 0 means to take
the connected component containing the origin. For this we consider the D-invariant D(v)
of v = v red⊕ v nil, see (4.14), and start with the special case that D(v) ∈ J = K ∪ L.
The general case with D(v) ∈ F(J) arbitrary then is obtained by putting these special
equations together.

1. Case D(v ) ∈ K: Let j := (p, q) and n := p + q − 1. Furthermore let V̂j := IRp+q

with coordinates (x0, x1, . . . , xn) and define the linear form λj on V̂j by λj(x) = (p +
q)x0. Also, identify Vj := IRn with coordinates (x1, . . . , xn) in the obvious way with the
hyperplane {x ∈ V̂j : λj(x) = 0}. We define Ψj as the set of all real-analytic functions
ψ(x) = ex0f(x1, . . . , xn) on V̂j where f is an extended real nil-polynomial on Vj and the
second derivative of ψ at the origin of V̂j has type (p, q), compare the Appendix for the
notion of a nil-polynomial.

It is clear that for every real t > 0 and every g ∈ GL(Vj) with ex0f(x) also the
function t ex0f(g(x)) is contained in Ψj . Furthermore, Ψjopp = −Ψj is evident for the
opposite jopp = (q, p). In particular, Ψ(1,0) = {tex0 : t > 0}, Ψ(1,1) = {tex0x1 : t 6= 0}
and Ψ(2,1) is the orbit of ψ = ex0(x2 + x2

1) under the group IR∗ ×GL(2, IR).

2. Case D(v ) ∈ L: Let j := m for some integer m ≥ 1 and put n := m − 1. Consider
V̂m := Cm with complex coordinates (z0, z1, . . . , zn) as real vector space and define the
linear form λm on V̂m by λm(z) := m(z0 + z0). Furthermore, consider Wm := Cn

with coordinates (z1, . . . , zn) in the obvious way as linear subspace of V̂m. We define Ψm
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as the set of all real-analytic functions ψ(z) = Re
(
ez0f(z1, . . . , zn)

)
on V̂j where f is an

extended complex nil-polynomial on Wm. Then the second derivative of every ψ ∈ Ψm at
the origin has type (m,m).

The group C∗× GL(Wm) acts in a canonical way on the extended complex nil-
polynomials on Wm and thus also on Ψm. In particular, Ψm is the orbit of the functions
Re(ez0), Re(ez0z1) and Re(ez0(z2 + z2

1)) for m = 1, 2, 3 respectively.

3. Case D(v ) arbitrary: Then D := D(v) ∈ Dp,q for integers p, q ≥ 1 with p + q ≥ 3,
and there exists a unique sum representation D =

∑
α∈A jα with (jα)α∈A a finite family

in J = K ∪ L. Put V̂D :=
⊕

α∈A V̂jα
and define the linear form λD on V̂D by (xjα

) 7→∑
α λjα

(xjα
). Furthermore, let ΨD be the space of all functions

ψ : (xjα
)α 7−→

∑
α

ψα(xjα
)

on V̂D ,where (ψα)α∈A is an arbitrary family of functions ψα ∈ Ψjα
. The second derivative

of every ψ ∈ ΨD at the origin then has type (p, q).

The relevance of the vector spaces V̂D with linear form λD and function space ΨD

is the following: Consider in V̂D the hyperplane V := {x ∈ V̂D : λD(x) = 0}. Then for
every ψ ∈ ΨD the analytic hypersurface

(7.1) F :=
{
x ∈ V : ψ(x) = ψ(0)

}0

is the base of a local tube realization of Sp,q with D-invariant D, and every local tube
realization of Sp,q with D-invariant D occurs this way up to affine equivalence. Indeed,
every local tube realization of Sp,q is associated with a qualifying MASA v ⊂ su(p, q).
In particular, for E := Cp+q the complexification vC := v ⊕ iv ⊂ sl(E) has an open
orbit O in the projective space IP(E) that is the image of the locally biholomorphic map
ϕ : vC → IP(E), ξ 7→ exp(ξ)a, where a is a suitable point in IP(E). Then every connected
component M of ϕ−1(Sp,q) is a closed tube submanifold of vC , lets take the one that
contains the origin. Then the base F := M ∩ i v of the tube manifold M has (7.1) as
defining equation if we put V := i v ⊂ sl(E) and ψ := ϕ|V . Now consider the extended
space V̂ := IR· id ⊕ iv ⊂ gl(E) and let tr be the trace functional on V̂ . Also extend ψ to
V̂ by t· id⊕x 7→ etψ(x) and denote the extension by the same symbol ψ.
Now the D-invariant D(v) and the corresponding decomposition of v red in Lemma 4.10
comes into play. We can identify V̂ with V̂D and tr with λD in a canonical way. Since ψ is
defined in terms of exp it is compatible with the decomposition in Lemma 4.10 and we only
have to discuss defining equations for the case that there is only one summand in (4.7), that
is, that D(v) ∈ J :

1. Case D(v) ∈ K: Let D(v) := (p, q). In case pq = 0 we have V = 0 and we have up
to a positive factor ψ(x) = (p − q)ex on V̂ = IR. We therefore assume p, q ≥ 1 in the
following. But then N := V = i v is an associative commutative nilpotent real subalgebra
of End(E) with 1-dimensional annihilator A, compare the Appendix. Choose a pointing ω
on N such that the associated symmetric 2-form h(x, y) = ω(xy) has type (p, q) on N 0.
Then as base for a tube realization associated with v we can take

F = {x ∈ N : f(x) = 0} with f(x) := h(expx/2, expx/2) = ω(expx) .

But f is an extended real nil-polynomial on N and F is a smooth algebraic hypersurface.
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2. Case D(v) ∈ L: Let D(v) := m and put n := m − 1. Then v = IR· id+N ⊂
gl(m,C) ⊂ u(m,m), where N ⊂ sl(m,C) is a complex MANSA and at the same
time a commutative associative nilpotent complex subalgebra of End(Cm). In case m = 1
we have N = 0 and ψ(z) = Re(ez) on V̂ = C. Let us therefore assume m > 1 in the
following. Then N has annihilator A of complex dimension 1. Let ω be a pointing on N .
Then the real symmetric 2-form h(z, w) = Re ω(zw) has type (m,m) on the complex
unital extension N 0 = C· id+N ⊂ End(Cm). We have to consider the complexification
vC = v ⊕ iv and to restrict the exponential mapping to iv . For this, we may identify the
IR-linear space V := iv with iIR· id+N ⊂ N 0 and get as base for a tube realization
associated to v the hypersurface

F = {w ∈ iIR· id+N : h(expw/2, expw/2) = 0} .

Writing w = is· id+z with s ∈ IR, z ∈ N we have

h(expw/2, expw/2) = Re(eisf(z)) for f(z) := ω(exp z) ,

that is, f is an extended complex nil-polynomial on N ∼= Cn, and F is affinely equivalent
to the non-algebraic hypersurface

{(s, z) ∈ IR⊕ Cn : Re
(
eisf(z1, . . . , zn)

)
= 0}0 .

7.2 Local tube realizations corresponding to Cartan subalgebras of su (p, q): By the
above we know Ψj for all j ∈ {(1, 0), (0, 1),1} and thus we can explicitly write down the
normal form equations of every CSA in su(p, q): For fixed p, q ≥ 1 and every ` ≥ 0 with
` ≤ min(p, q) consider the CSA `h as defined in Section 4. Then we have

D := D(`h) = (p− `)·(1, 0) + (q − `)·(0, 1) + `·1.
With d := p+ q − 2` then

VD =
{
(z, t) ∈ C` ⊕ IRd :

∑̀

k=1

(zk + zk) +
d∑

k=1

tk = 0
}

and as tube base we can take a connected component of the set of all (z, t) ∈ VD satisfying

(7.3)
∑̀

k=1

Re(ezk) +
p−∑̀

k=1

etk =
q−∑̀

k=1

etp−`+k .

7.4 Comparing with the equations of Isaev-Mishchenko:
It is easy to write down explicitly Ψj for all j = (p, q) with q ≤ 2, getting back the

classifications in [5] and [11]. In the following we compare the equations obtained in [11]
with ours, where D is the corresponding D-invariant and n = p :
types 1), 4), 5): D = s·(1, 0)+(n− s, 2). The corresponding MANSA in su(n− s, 2) has
nil-index 2,3,4 respectively.
type 2): D = s·(1, 0) + (0, 1) + (n− s, 1).
type 3): D = s·(1, 0) + (n− s− 1, 1) + 1,
type 6): D = (n− 2)·(1, 0) + 2.
type 7): D = s·(1, 0) + (t, 1) + (n− s− t, 1).
types 8), 9), 10): These types correspond to the three Cartan subalgebras of su(n, 2) and
are affinely equivalent to the equations (7.3) for ` = 0, 2, 1 respectively.
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8. Some Examples
We will give applications of Proposition 9.36 in the real as well as in the complex

case. We start with the real version.
8.1 Examples obtained from real cubic forms LetW be a real vector space of dimension
2n and q a quadratic form of type (n, n) on W . Then there exists a decomposition W =
W ′ ⊕W ′′ into totally isotropic linear subspaces. Let furthermore c be a cubic form on W ′

and define the function f on V := W ⊕ IR by

(8.2) f(x, y, t) := t+ q(x+ y) + c(x) for all t ∈ IR, x ∈W ′, y ∈W ′′ .

Then f is an extended nil-polynomial on V and the hypersurface F := {v ∈ V : f(v) = 0}
in V is the base of a local tube realization for Sp,p with p = n + 1. On the other hand, F
is affinely homogeneous and also the complement V \F is affinely homogeneous, compare
the end of the Appendix. The complement V \F decomposes into two affinely homogeneous
domains D±, the tube domains over these domains are complex affinely homogeneous do-
mains in V C = V ⊕ iV . With (9.44) we see that there exists a real

(
n
3

)
-parameter family of

cubic forms on W ′ leading to pairwise affinely inequivalent examples (notice that property
(∗) of Proposition 9.43 is satisfied for all α(tj) in (9.44) near c0). In particular this shows
that there are infinitely many affinely non-equivalent local tube realizations for S4,4.
8.3 Examples obtained from complex cubic forms We start with a more general situa-

tion: Suppose that V is a complex vector space and f : V → C is a holomorphic submersion
with f(0) = 0. Then

F := {z ∈ V : f(z) = 0}0

is a complex hypersurface in V , the complement D := V \F is a domain in V and

(8.4) F :=
{
(t, z) ∈ IR⊕ V : Re

(
eitf(z)

)
= 0

}0

is a real hypersurface in IR ⊕ V . With respect to the canonical projection pr : F → V ,
(t, z) 7→ z, the surface F is a covering over the domain D and a trivial real line bundle
over H . In fact, F̃ := pr−1(F ) is a connected real hypersurface in F , while the open subset
D̃ := pr−1(D) in F in general is not connected.
Now assume that V = W ⊕C and that f is an extended complex nil-polynomial of degree
≤ 3 on V as considered in Proposition 9.36. As a consequence of Proposition 9.22 the
group A := {g ∈ Aff(V ) : f ◦ g = f} acts transitively on every level set f−1(c) in
V . Also, for every s ∈ C the linear transformation θs := es idW ′ ⊕ e2s idW ′′ ⊕ e3s idC

satisfies f ◦ θs = e3sf , see also (9.41). The group C × A acts by the affine transformations

(t, z) 7→ (
t− 3 Im(s) , θs g(z)

)
, s ∈ C, g ∈ A,

on F and has precisely three orbits there – the closed orbit F̃ and the two connected com-
ponents D̃± of the domain D̃. Also, the translation (t, z) 7→ (t + π, z) interchanges these
two domains D̃+, D̃− in F .
Putting things together we got the following: Let W be a complex vector space of dimen-
sion 2n and q a non-degenerate quadratic form on W . Then there exists a decomposition
W = W ′ ⊕W ′′ into totally isotropic linear subspaces. Let furthermore c be a cubic form
on W ′ and define the function f on V := W ⊕ C by (8.2) with IR replaced by C. Then f
is an extended complex nil-polynomial and F as defined in (8.4) is the base of a local tube
realization M ⊂ UC = U ⊕ iU for Sp,p, where U := IR ⊕ V and p = 2(n + 1). Further-
more, the real hypersurface M in UC contains an affinely homogeneous domain. For every
n ≥ 3 we get a complex

(
n
3

)
-parameter family of pairwise affinely inequivalent examples.
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9. Appendix – Nilpotent commutative algebras
In this Appendix, all occurring algebras are either associative or Lie. Throughout, IF is an
arbitrary base field of characteristic zero. For every associative algebra A, every x ∈ A and
every integer k ≥ 1 we put

(9.1) x(k) :=
1
k!
xk and x(0) := 11 if A has a unit 11 .

We collect several purely algebraic statements that are used in the paper and might be of
independent interest. Some of them are probably known to the experts. Since we could not
find a reference in the literature we state it here. Recall e.g. our convention that End(E) is
the associative endomorphism algebra while gl(E) is the same space, but endowed with the
corresponding Lie product. We start with a standard definition.
9.2 Definition. Let N be an commutative associative algebra over IF and define the ideals
N k ⊂ N inductively by N 1 = N and N k+1 = 〈NN k〉. Then N is called nilpotent if
N k+1 = 0 for some k ≥ 0, and the minimal k with this property is called the nil-index of
N . Furthermore, A := Ann(N ) := {x ∈ N : xN = 0} is called the annihilator of N .

The general embedded case
In the following, let E be a vector space of finite dimension m ≥ 2 over IF. For every

subalgebra N ⊂ End(E) define the following characteristic subspaces of E:

(9.3) B := BN := 〈N (v) : v ∈ E〉 and K := KN := {v ∈ E : N (v) = 0} .

9.4 Proposition. Suppose that N is maximal among all commutative and nilpotent subal-
gebras of End(E). Then

(i) 0 6= KN ⊂ BN 6= E. Also, KN = BN holds if and only if A = Ann(N ) has
nil-index 1.

(ii) N ⊕ IF· id is maximal among all commutative subalgebras of End(E).
(iii) N is irreducible on E, i.e., for every N -invariant decomposition E = E′ ⊕ E′′ either

E′ = 0 or E′′ = 0.

9.5 N -adapted decompositions and matrix presentations. For every N satisfying the
assumptions in Proposition 9.4 we select subspaces E1,E2 of E such that E1 ⊕ BN = E
and E2 ⊕KN = BN . Then, for E3 := KN , we have the decomposition

(9.6) E = E1 ⊕ E2 ⊕ E3 with dj := dimEj for j = 1, 2, 3 ,

that we also call an N -adapted decomposition. Every x ∈ End(E) can be written as 3× 3-
matrix (xjk) with xjk ∈ Hom(Ek,Ej). With πjk : End(E) → Hom(Ek,Ej) we denote
the projection x 7→ xjk.

We call two subalgebras N ⊂ End(E) and N ′ ⊂ End(E′) conjugate if there exists
an invertible Ψ ∈ Hom(E,E′) such that N ′ = Ψ ◦ N ◦Ψ−1. One of our goals is to decide
under which conditions two isomorphic subalgebras (isomorphic as abstract IF-algebras) are
already conjugate. In general, there exist isomorphic subalgebras which are not conjugate.

It is obvious that a nilpotent subalgebra N ⊂ End(E) contains only nilpotent endo-
morphisms. By a theorem of Engel the converse is also true: A subalgebra N ⊂ End(E)
consisting of nilpotent endomorphisms only is nilpotent and there is a full flag

F1 ⊂ F2 ⊂ · · · ⊂ Fm = E, dimFk = k,

which is stable under N , i.e., with respect to a suitable basis of E the algebra N consists of
strictly lower-triangular matrices in IFm×m. With this notation we can state
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9.7 Proposition. Suppose that N ⊂ End(E) satisfies the assumptions of 9.4 and has nil-
index ν. For a fixed N -adapted decomposition E = E1 ⊕ E2 ⊕ E3 and all 1 ≤ j, k ≤ 3 put
Njk := πjk(N ). Then:

(i) There exists a linear bijection J : N21 → N32 and a linear map N : N21 → N22 such
that

N =








0 0 0
y N(y) 0
t J(y) 0


 : y ∈ N21, t ∈ Hom(E1,E3)



 .

(ii) A := {x ∈ N : x21 = 0} ∼= Hom(E1,E3) is the annihilator of N .
(iii) N21 × N21 → N31, (x, y) 7→ J(x) ◦ y, is a non-degenerate symmetric 2-form (in

fact, is equivalent to the restriction of the form b defined in (9.12) after the obvious
identifications).

(iv) N22 is a nilpotent commutative subalgebra of End(E2)
with nil-index ≤ max(ν − 2, 1).

(v) E2 = 〈N23(E1)〉 and {z ∈ E2 : y(z) = 0 for all y ∈ N32} = 0.
(vi) d1d3 + dd2/µe ≤ dimN ≤ [m2/4] for m := d1 + d2 + d3 = dimE and

µ := min(d1, d3). In particular, if d1 = 1 then dimN = d2 + d3 = m− 1.

9.8 Remark. The linear maps N and J in (i) above satisfy for all x, y ∈ E the relations:
(a) N(x)k = 0 for some integer k,
(b) N(x)y = N(y)x, J(x)y = J(y)x and J(x)N(y) = J(y)N(x),
(c) N(N(x)y) = N(x)N(y).

On the other hand, let a vector space W over IF be given. Every pair N : W → End(W),
J : W ≈→ W∗ of linear maps satisfying (a) - (c) gives rise by (i) above to a commutative
maximal nilpotent subalgebra N ⊂ End(E) with E = IF ⊕W ⊕ IF, i.e., E1 = IF = E3,
E2 = W and N has 1-dimensional annihilator. In particular, N ≡ 0 and J given by any
symmetric and non-degenerate scalar product on W trivially satisfy (a) - (c) and define a
maximal nilpotent subalgebra N with dimN = dimE − 1 and nil-index 2. In this case
N/A is the zero product algebra.
9.9 Remark. The upper bound in inequality (vi) is sharp as the nilpotent subalgebra

{x ∈ End(E) : xjk = 0 if (j, k) 6= (3, 1)}

for d2 = d3 = dm/2e shows. It is much harder to find better lower bounds for dimN , not
to speak of sharp ones. For infinitely many values of m (starting with m = 14) there exist
maximal commutative and nilpotent subalgebras of End(IFm) with dimN < m − 1, see
[18].

Abstract commutative nilpotent algebras

The left-regular representation of a nilpotent (associative) algebra is not faithful, con-
trary to the case of any unital algebra. For every nilpotent algebra M denote by M0 :=
IF·11⊕M its unital extension. Such extensions of nilpotent algebras are precisely those IF-
algebras, which contain a maximal ideal of codimension 1 consisting of nilpotent elements
only. Denote by L : M0 → End(M0) the corresponding left regular representation. It is
obvious that the algebras M and L(M) ⊂ End(M0) are isomorphic via L.

9.10 Proposition. Let M be a commutative nilpotent IF-algebra of finite dimension. Then
(i) L(M) is maximal among all commutative nilpotent subalgebras of End(M0) and

consists entirely of nilpotent endomorphisms. Furthermore, KL(M) = Ann(M) and
BL(M) = M. The image of the unital extension, L(M0) is maximal among all
commutative subalgebras of End(M0).
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(ii) A maximal commutative nilpotent subalgebra N ⊂ End(E) is conjugate to the
image L(M) of some commutative nilpotent algebra M as above if and only if
codimE BN = 1, see (9.3) for the notation.

(iii) Let N ⊂ End(E) and M ⊂ End(F) be two maximal commutative nilpotent subal-
gebras. If codimE BN = codimF BM = 1 thenM andN are conjugate (in the above
defined sense) if and only ifM andN are isomorphic as abstract algebras. There ex-
ist non-conjugate subalgebras N ,M ⊂ End(E) with codimE BN > 1, which are
isomorphic as abstract algebras.

9.11 Associated 2-forms. Let N be an commutative and nilpotent IF-algebra and A :=
Ann(N ) its annihilator. On the unital extension N 0 = IF·11⊕N fix a projection π = π2 ∈
End(N 0) with range π(N ) = A and π(11) = 0. Then

(9.12) bπ : N 0 ×N 0 → A, (x, y) 7−→ π(xy)

defines anA-valued symmetric 2-form. Clearly, the restriction of bπ toN factorizes through
N/A×N/A and we write also bπ for the corresponding A-valued 2-form on N/A. Fur-
thermore, π determines the decomposition

(9.13)
N 0 = N1 ⊕N2 ⊕N3 with
N1 = IF·11, N2 = N ∩ kerπ ∼= N/A and N3 = A = Ann(N ) .

The canonical isomorphism ∼= in (9.13) makes N2 to an algebra that we denote by N π
2 .

In terms of π and the algebra structure on N the product on N π
2 is given by (x, y) 7→

(id−π)(xy) for x, y ∈ N π
2 .

9.14 Lemma. Let N 6= 0 be a commutative nilpotent associative IF-algebra with annihi-
lator A := Ann(N ) and let L : N 0 ↪→ End(N 0) be the left regular representation of the
unital extension N 0. Fix a projection π on N 0 with range A as above and let bπ be the
associated 2-form (9.12). Then

(i) The decomposition (9.13) is an L(N )-adapted decomposition of N 0.
(ii) bπ is nondegenerate.

(iii) bπ is associative, or equivalently, every L(y) ∈ End(N 0) is bπ-selfadjoint.
(iv) The subspaces N1 and N3 are bπ-isotropic while the subspaces (N1 ⊕ N3) and N2

are bπ-orthogonal to each other. Consequently, the restriction of bπ to the algebra
N π

2
∼= N/A is a non-degenerate associative A-valued 2-form.

(v) In the particular case IF = IR and dimA = 1 the following holds after fixing a linear
isomorphism ψ : A → IR: The type (p, q) of the real 2-form ψ ◦ bπ on N 0 does not
depend on the choice of the projection π.

Commutative nilpotent algebras consisting of selfadjoint endomorphisms

As indicated in the main part of this paper the classification of the various local tube re-
alizations of Sp,q is equivalent to the classification of maximal abelian subalgebras v in
su(p, q) = su(E, h), contained in the (−1)-eigenspace of the involution τ of the Lie alge-
bra su(p, q), up to conjugation by elements from G := NSL(E)(su(p, q)), compare 3.4.

Every such abelian subalgebra v admits a unique decomposition into its ad-reduc-
tive and its ad-nilpotent part, v = v red ⊕ v nil. Also, we have the further decomposition
vnil =

⊕
 n , where the building blocks n j are various ad-nilpotent abelian subalge-

bras n maximal in su(p, q) or sl(m,C). In turn, such Lie algebras (also contained in
Fix(−τ) ) are in a 1-1-correspondence to associative commutative and nilpotent subalge-
bras of End(V), that consist of selfadjoint endomorphisms with respect to a symmetric
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non-degenerate 2-form h on V over IF = IR or IF = C. This is one motivation to investi-
gate a symmetric version of maximal commutative and nilpotent subalgebras in End(E).

In this subsection let E be an arbitrary vector space of finite dimension over IF and
h : E×E→ IF a symmetric non-degenerate 2-form. With S(E, h) ⊂ End(E) we denote the
linear subspace of all operators a that are selfadjoint with respect to h (that is, h(ax, y) =
h(x, ay) for all x, y ∈ E). Given V ⊂ E we write V⊥ for the orthogonal complement
with respect to h. Note that in general V ∩ V⊥ 6= 0. For (maximal) nilpotent commutative
subalgebras in End(E), contained in S(E, h), there are N -adapted decompositions which
are in addition related to the 2-form h:

9.15 Lemma. Let h : E×E→ IF be a non-degenerate symmetric 2-form andN ⊂ End(E)
a maximal nilpotent commutative subalgebra, contained in S(E, h). Let KN , BN be the
characteristic subspaces as defined in 9.3. Then:

(i) KN = B⊥N .
(ii) dimAnn(N ) = 1

(iii) There exists an N -adapted decomposition E = E1 ⊕ E2 ⊕ E3 such that
(a) dimE1 = dimE3 = 1.
(b) h

∣∣
E3

= 0, h
∣∣
E1

= 0, and the pairing h : E1 × E3 → IF as well as the restriction
h
∣∣
E2

are non-degenerate.
(c) E2 = (E1 ⊕ E3)⊥.

9.16 Definition. LetN ⊂ End(E) be as in the previous Lemma. We call every decomposi-
tion E = E1⊕E2⊕E3 which satisfies the condition (ii) in Lemma 9.15 an (N , h)-adapted
decomposition of E.

In the following let N ⊂ S(E, h) be a maximal nilpotent commutative subalgebra of
End(E) and A := Ann(N ) its annihilator (which is 1-dimensional according to the above
lemma). Next, we relate the 2-form bπ : N 0 × N 0 → A := Ann(N ) to the symmetric
2-form h : E × E → IF. Recall that the choice of the projection π : N → A is equivalent
to the choice of a linear subspace N2 ⊂ N with N = N2 ⊕ A. It is easy to see that every
(N , h)-adapted decomposition of E gives rise to the complementary subspace N2 := {n ∈
N : n(E1) ⊂ E2}, i.e., N2 ⊕ A = N . It turns out to be more subtle to prove the opposite
statement as it involves the solution of certain quadratic equations in E.

9.17 Proposition. LetN ⊂ S(E, h) be a maximal nilpotent commutative subalgebra. Then:
(i) For every linear subspace N2 ⊂ N satisfying N = N2 ⊕ A, there exists an (N , h)-

adapted decomposition E = E1 ⊕ E2 ⊕ E3 with

N2 = {n ∈ N : n(E1) ⊂ E2} .

(ii) For E = E1⊕E2⊕E3 as in (i) choose generators e1 ∈ E1, e3 ∈ E3 with h(e1, e3) = 1
and define κ : A → IF by n(e1) = κ(n)e3 for all n ∈ A. Let π : N 0 → A the
projection corresponding with kernel N1 ⊕ N and κ ◦ bπ : N 0 × N 0 → IF the
corresponding nondegenerate symmetric 2-form. Then the map

N 0 → E, m 7→ m(e1)

is an isometry between (N 0, κ ◦ bπ) and (E, h) which respects the decompositions
N 0 = IF·11⊕N2 ⊕A and E = E1 ⊕ E2 ⊕ E3

Proposition 9.17 is the main ingredient in the proof of the following theorem, which can be
considered as a symmetric version of Proposition 9.10:
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9.18 Theorem. Let h and h′ be two non-degenerate symmetric forms on E and E′ respec-
tively over IF , and let N ⊂ End(E), N ′ ⊂ End(E′) be two maximal nilpotent and
commutative subalgebras.

(i) Assume, that in additionN ⊂ S(E, h) andN ′ ⊂ S(E′, h′) holds. ThenN andN ′ are
isomorphic as IF-algebras if and only if there exists an isometry Ψ : (E, h) → (E′, h′)
with N ′ = Ψ ◦ N ◦Ψ−1.

(ii) In particular, if E = E′ and h = h′, two such subalgebrasN ,N ′ contained in S(E, h)
are isomorphic if and only if they are conjugate by an element in SO(E, h).

In case IF = IR,C the above theorem has the following application for the classifica-
tion of maximal abelian subalgebras of su(p, q) and sl(m,C). Let su(p, q) ∼= su(E, h)
and τ : su(p, q) → su(p, q) be as in 3.4, induced by a conjugation τ : E → E. Re-
call that we write V = Eτ for the real points with respect to τ . Note that su(p, q)τ ∼=
so(p, q) and SU(p, q)τ ∼= SO(p, q) ∼= SO(V, h|V). Further sl(m,C)τ ∼= so(m,C), i.e.,
τ : sl(m,C) → sl(m,C) is induced by a symmetric non-degenerate 2-form hτ on E.

9.19 Corollary. Two maximal abelian Lie subalgebras v1, v2 in su(E, h) respectively
sl(E) consisting of nilpotent elements and contained in su(E, h)−τ ∼= iS(V, h)0 respec-
tively sl(E)−τ ∼= S(E, hτ )0 are conjugate under SO(V, h) respectively under SO(E, hτ ) if
and only if the corresponding associative algebras iv1, iv2 in End(V) (respectively v1 and
v2 in End(E)) are isomorphic as IF-algebras.

Some affinely homogeneous surfaces
LetN 6= 0 be a commutative associative nilpotent algebra over IF of finite dimension

with nil-index ν. For every k ≥ 1 choose a linear subspace Vk ⊂ N k with N k = Vk ⊕
N k+1. Then N =

⊕
k≥1 Vk with Vν = N ν , and we write every x ∈ N in the form

x =
∑ν

k=1 xk with xk ∈ Vk. With π : N → N ν we denote the canonical projection
x 7→ xν . As before we denote by N 0 = IF·11 ⊕N the unital extension of N and extend π
linearly to N 0 by requiring π(11) = 0.

Denote by P the space of all polynomial maps p : N → N of the form

(9.20) x 7−→
∑

pi1i2...irxi1xi2 · · ·xir ,

where the integers r ≥ 1 and 1 ≤ i1 ≤ . . . ≤ ir satisfy
∑r

j=1 ij ≤ ν and the coefficients
pi1i2...ir are from N 0. It is clear that with respect to composition P is a unital algebra over
N 0. We are mainly interested in polynomials p ∈ P that are invertible in P , that is, where
for every 1 ≤ j ≤ ν the coefficient pj in front of the linear monomial xj is invertible in
N 0.

For every p ∈ P the composition f := π ◦p is a polynomial mapN → N ν of degree
≤ ν. Furthermore, in case p is invertible, the algebraic subvariety

(9.21) F := {x ∈ N : f (x) = 0}

is smooth, in fact, is the graph of a polynomial map ker(π) → N ν . Denote by Aff(N ) the
group of all affine automorphisms of N .

9.22 Proposition. Suppose that N has nil-index ν ≤ 4 and that p ∈ P is invertible. In
addition assume that

(i) p12 is invertible in N 0 if ν = 3,
(ii) VjVk ⊂ Vj+k for all j, k and that p112, p13 are invertible in N 0 if ν = 4.

Then for f := π ◦ p the group A := {g ∈ Aff(N ) : f ◦ g = f } acts transitively on every
translated subvariety c+ F = f −1(c), c ∈ N ν .



and tube realizations of hyperquadrics 23

Proof. We assume ν = 4, the cases ν < 4 are similar but easier. For every k = 2, 3, 4 denote
byLk ⊂ End(N ) the subspace of nilpotent transformations x 7→ α1x1, x 7→ α2x1+α1x2,
x 7→ α3x1 + α2x2 + α1x3 respectively with arbitrary coefficients αj ∈ Vj .
Now fix an arbitrary point a ∈ F and denote by τ ∈ Aff(N ) the translation x 7→ x+ a. A
simple computation shows

f ◦ τ(x) = f (x) + x2
1R2(x) + x1R3(x) +R4(x)

for suitable Rk ∈ Lk. Then ρ := id−p−1
112R2 ∈ GL(N ) is unipotent and satisfies

f ◦ τ ◦ ρ (x) = f (x) + x1S3(x) + S4(x)

for suitable Sk ∈ Lk. Further σ := id−p−1
13 S3 ∈ GL(N ) satisfies

f ◦ τ ◦ ρ ◦ σ(x) = f (x) + T4(x)

for a suitable T4 ∈ L4. Finally, g(x) = τ ◦ ρ ◦ σ(x− p−1
4 T4(x)) defines an element g ∈ A

with g(c) = c+ a for all c ∈ N ν .

9.23 Remark. The proof of Proposition 9.22 also works for fields IF of arbitrary character-
istic. Special polynomials p ∈ P can be defined in the following way: Let

(9.24) Φ :=
∞∑

k=1

ckT
k ∈ IF[[T ]]

be an arbitrary formal power series over IF with vanishing constant term. Since N is nilpo-
tent p(x) := Φ(x) =

∑
ckx

k defines a polynomial map p ∈ P . Clearly, p is invertible if
and only if c1 6= 0. Furthermore, if we assume that IF has characteristic 0, then invertibility
of p12 is equivalent to c2 6= 0 and invertibility of p13p112 is equivalent to c2c3 6= 0. For sim-
plicity we may add a constant term c0 to the formal power series Φ (which will not count) if
we at the same time extend the projection π fromN to its unital extensionN 0 = IF·11⊕N
by requiring π(11) = 0. Later we are mainly interested in the case where Φ = exp is the
usual exponential series.

The conditions (i), (ii) in Proposition 9.22 cannot be omitted: As a simple example
with ν = 3 consider the 3-dimensional cyclic algebra N with basis e1, e2 = e21, e3 = e31
satisfying e41 = 0. Then, identifyingN with IF3 in the obvious way, we get for Φ = T +T 3

in (9.24) that f (x) = x3 + x3
1 on IF3. In this case, the group A does not act transitively on

F = f −1(0) in general. In fact, in case IF = IR the affine group Aff(F ) = {g ∈ Aff(N ) :
g(F ) = F} has precisely two orbits in F - the line IRe2 ⊂ F and its complement in F .
Indeed, the subgroup of all (x1, x2, x3) 7→ (tx1, x2 + s, t3x3) with s ∈ IR, t ∈ IR∗ acts
transitively on the complement.

Nil-polynomials

In this subsection let N be an arbitrary commutative associative nilpotent algebra of
finite dimension over IF with annihilatorA of dimension 1 and nil-index ν. Let us call every
linear form ω onN with ω(A) = IF a pointing ofN . Also, N with a fixed pointing is called
a pointed algebra, a PANA for short. Two PANAs (N , ω), (Ñ , ω̃) are called isomorphic if
there is an algebra isomorphism g : Ñ → N with ω̃ = ω ◦ g. As before with projections
we always consider every pointing ω onN linearly extended toN 0 by requiring ω(11) = 0.

For every vector space V of finite dimension we denote by IF[V ] the algebra of all
(IF-valued) polynomials on V .
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9.25 Definition. f ∈ IF[W ] is called a nil-polynomial on W if there exists a PANA (N , ω)
and a linear isomorphism ϕ : W → ker(ω) ⊂ N such that f = ω ◦ exp ◦ϕ. Two nil-
polynomials f ∈ IF[W ], f̃ ∈ IF[W̃ ] are called equivalent if there exists t ∈ GL(IF) ∼= IF∗

and a linear isomorphism g : W → W̃ with f̃ = t ◦ f ◦ g−1.
9.26 Definition. In case V 6= 0 we call f ∈ IF[V ] an extended nil-polynomial on V if there
exists a PANA (N , ω) and a linear isomorphism ϕ : V → N with f = ω ◦ exp ◦ϕ. In case
V = 0 every constant in IF∗ is called an extended nil-polynomial on V .

Nil-polynomials on vector spaces W of dimension n and extended nil-polynomials
on vector spaces V of dimension n + 1 correspond to each other. Indeed, every extended
nil-polynomial on V is a sum f =

∑
k>0 f[k] of homogeneous parts f[k] of degree k.

Furthermore, V = W ⊕ A with W = ker f[1] and A = {y ∈ V : f[2](x + y) = 0 ∀x ∈
V } ∼= IF. Then the restriction of f toW is a nil-polynomial onW and every nil-polynomial
on W occurs this way. For our applications in Section 7 we need extended nil-polynomials.
In the following we consider only nil-polynomials for simplicity.

By definition, every equivalence class of nil-polynomials in IF[W ] is an orbit of the
group GL(IF)×GL(W ) acting in the obvious way on IF[W ]. For every pair of nil-polyno-
mials P ∈ IF[W ], P̃ ∈ IF[W̃ ] we get a new nil-polynomial P ⊕ P̃ ∈ IF[W ⊕ W̃ ] by setting
(P ⊕ P̃ )(x, x̃) := P (x) + P̃ (x̃) for all x ∈W and x∈̃W̃ .

Fix a nil-polynomial f ∈ IF[W ] in the following. Then we have the expansion f =∑
k≥2 f[k] into homogeneous parts. Notice that f[2] is a non-degenerate quadratic form on

W . For every k ≥ 2 there is a unique symmetric k-form ωk on W with

(9.27) ωk(x, . . . , x) = k! f[k](x)

for all x ∈ W . Using f[2] and f[3] we define a commutative (not necessarily associative)
product (x, y) 7→ x·y on W by

(9.28) ω2(x·y, z) = ω3(x, y, z) for all z ∈W

and also a commutative product on W ⊕ IF by

(9.29) (x, s)(y, t) := (x·y, ω2(x, y)) .

Then, if f = ω ◦ exp ◦ϕ for a PANA (N , ω) with kernel K = ker(ω) and linear isomor-
phism ϕ : W → K we have ωk(x1, . . . , xk) = ω((ϕx1)(ϕx2) · · · (ϕxk)) for all k ≥ 2
and x1, . . . , xk ∈ W . For the annihilator A of N there is a unique linear isomorphism
ψ : IF → A such that π = ψ ◦ ω is the canonical projection K ⊕ A → A. With these
ingredients we have
9.30 Lemma. With respect to the product (9.29) the linear map

W ⊕ IF → N , (x, s) 7→ ϕ(x) + ψ(s) ,

is an isomorphism of algebras. In particular, W with product x·y is isomorphic to the nilpo-
tent algebra N/A and has nil-index ν−1.
Proof. For all x, y ∈W we have

(ϕ(x) + ψ(s))(ϕ(y) + ψ(t)) = (N −A) +A with
N := ϕ(x)ϕ(y) ∈ N and A := π(ϕ(x)ϕ(y)) = ψ(ω2(x, y)) ∈ A.

It remains to show N −A = ϕ(x·y). But this follows from
N −A ∈ K and ω

(
ϕ(x·y)ϕ(z)

)
= ω

(
ϕ(x)ϕ(y)ϕ(z)

)
= ω

(
(N −A)ϕ(z)

)

for all z ∈W .
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9.31 Corollary. Every nil-polynomial f on W is uniquely determined by its quadratic and
cubic term, f[2] and f[3]. In fact, the other f[k] are recursively determined by

(9.32) ωk+1(x0, x1, . . . , xk) = ωk(x0·x1, x2, . . . , xk)

for all k ≥ 2 and all x0, . . . , xk ∈W , where the symmetric ωk are determined by (9.27).

Another application of (9.30) is the following

9.33 Proposition. Let (N , ω), (Ñ , ω̃) be arbitrary PANAs and let f ∈ IF[W ], f̃ ∈ IF[W̃ ] be
associated nil-polynomials respectively. Then, if f and f̃ are equivalent as nil-polynomials,
also N and Ñ are isomorphic as algebras.

Proof. Write f̃ = t ◦ f ◦ g−1 as in Definition 9.25 and define the products · and ∼· on W
and W̃ as in (9.28). With respect to these products g : W → W̃ is an algebra isomorphism.
As in (9.29) the products · and ∼· extend to the algebras W ⊕ IF ∼= N and W̃ ⊕ IF ∼= Ñ .
Finally g ⊕ id gives an algebra isomorphism between them.

9.34 Lemma. For every nil-polynomial f on W the cubic term c := f[3] is trace-free with
respect to the quadratic term q := f[2], see [7] p. 20 for this notion of trace,
Proof. Let f ∈ IF[W ] be given by the PANA (N , ω) with nil-index ν. Without loss of
generality we assume that W = ker(ω). Choose a basis e1, . . . , en of W and a mapping
α : {1, . . . , n} → {1, . . . , ν−1} such that {ei : α(i) = `} is a basis of N `/N `+1 for
` = 1, . . . , ν−1. With respect to this basis the forms q, c are given by the tensors gij =
ω2(ei, ej) and hijk = ω3(ei, ej , ek). It is clear that gij = 0 holds if α(i) + α(j) > ν.
Since α is surjective, this implies gij = 0 if α(i) + α(j) < ν, where (gij) = (gij)−1. On
the other hand, hijk = 0 if α(i) + α(j) ≥ ν, proving the claim.

Corollary 9.31 suggests the following question: Given a non-degenerate quadratic
form q and a cubic form c on W . When does there exist a nil-polynomial f ∈ IF[W ] with
f[2] = q and f[3] = c ? Using q, c we can define as above for k = 2, 3 the symmetric
k-linear form ωk on W and with it the commutative product x·y on W . A necessary and
sufficient condition for a positive answer is that W with this product is a nilpotent and
associative algebra. As a consequence we get for every fixed non-degenerate quadratic form
q on W the following structural information on the space of all nil-polynomials f on W
with f[2] = q: Denote by C the set of all cubic forms on W . Then C is a linear space of
dimension

(
n+2

3

)
, n = dimW , and

(9.35) Cq := {c ∈ C : ∃ nil-polynomial f on W with f[2] = q, f[3] = c}

is an algebraic subset. The orthogonal group O(q) = {g ∈ GL(W ) : q ◦ g = q} acts from
the right on Cq . The O(q)-orbits in Cq are in 1-1-correspondence to the equivalence classes
of nil-polynomials f on W with f[2] = q.

Examples of nil-polynomials of degree 3 can be constructed in the following way.

9.36 Proposition. Let W be an IF-vector space of finite dimension and q a non-degenerate
quadratic form on W . Suppose furthermore that W = W1 ⊕W2 for totally isotropic linear
subspaces Wk and that c is a cubic form on W1. Then, if we extend c to W by c(x+ y) =
c(x) for all x ∈ W1, y ∈ W2, the sum f := q + c is a nil-polynomial on W . In particular,
c ∈ Cq .
Every g ∈ GL(W1) extends to an h ∈ O(q) ⊂ GL(W ) in such a way that with c̃ := c ◦ g
also q + c̃ = f ◦ h is a nil-polynomial on W .
Proof. ω3(x, y, t) = 0 for all t ∈ W2 implies W1·W1 ⊂ W2 and W1·W2 = 0, that is,
(x·y)·z = 0 for all x, y, z ∈W .
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Now fix g ∈ GL(W1). There exists a unique g] ∈ GL(W2) with ω2(gx, y) = ω2(x, g]y)
for all x ∈W1 and y ∈W2. But then h := g × (g])−1 ∈ O(q) does the job.

Let IF ⊂ IK be a field extension and consider every polynomial f on V in the canon-
ical way as polynomial f̃ on V ⊗IF IK. Then with f also f̃ is a nil-polynomial. In general,
for non-equivalent nil-polynomials f , g on V the nil-polynomials f̃ , g̃ may be equivalent.
We use these extensions in case IR ⊂ C.

Graded PANAs
Let (N , ω) with annihilator A be a PANA in the following. A grading then is a de-

composition

(9.37) N =
⊕

k>0

Nk , NjNk ⊂ Nj+k .

Clearly A = Nd for d := max{k : Nk 6= 0}. Without loss of generality we assume that
W :=

⊕
k<dNk is the kernel of ω.

For the corresponding nil-polynomial f = ω ◦ exp ∈ IF[W ], ` := d− 1 and ν the
nil-index of N we then have

(9.38) f =
ν∑

k=2

f[k] with f[k](x) =
1
k!

( ∑

j1+...+jk=d

xj1xj2 · · ·xjk

)

for all x = (x1, . . . , x`) ∈ N1 ⊕ · · · ⊕ N` = W ⊂ N , where every index j` in (9.38) is
positive. If we put, using (9.1),

‖µ‖ = µ1 + 2µ2 + . . .+ `µ` and x(µ) = x
(µ1)
1 x

(µ2)
2 · · ·x(µ`)

`

for every multi-index µ ∈ IN` and every x = (x1, . . . , x`), we can rewrite (9.38) as

(9.39) f(x) =
∑

‖µ‖=d

x(µ) .

We consider an example.

9.40 Cyclic PANAs For fixed integer ν ≥ 1 let N be the cyclic algebra of nil-index ν
over IF, that is, there is an element ξ ∈ N such that the powers ξk, 1 ≤ k ≤ ν, form
a basis of N and ξν+1 = 0. Then N is a graded algebra with respect to Nk := IF ξk

for all k > 0 in (9.37) and becomes a PANA with respect to the pointing ω uniquely
determined by ω(ξk) = δk,ν for all k. For n := ν − 1 we identify IFn and ker(ω) via
(x1, . . . , xn) =

∑
xkξ

k. The corresponding nil-polynomial f ∈ IF[x1, . . . , xn] will then
be called a cyclic nil-polynomial, see also Table 1. In case IF = IR the quadratic form f[2]
has type (dn

2 e, bn
2 c).

f[2] f[3] f[4] f[5] f[6]

0 0 0 0 0

x
(2)
1 0 0 0 0

x1x2 x
(3)
1 0 0 0

x1x3 + x
(2)
2 x

(2)
1 x2 x

(4)
1 0 0

x1x4 + x2x3 x1x
(2)
2 + x

(2)
1 x3 x

(3)
1 x2 x

(5)
1 0

x1x5 + x2x4 + x
(2)
3 x1x2x3 + x

(2)
1 x4 + x

(3)
2 x

(2)
1 x

(2)
2 + x

(3)
1 x3 x

(4)
1 x2 x

(6)
1

Table 1: Cyclic nil-polynomials f ∈ IF[x1, . . . , xn−1] for 1 ≤ n ≤ 6, where y(k) := yk/(k!)
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For graded PANAs N =
⊕

k>0Nk with annihilator A = Nd we have for every
s ∈ IF∗ the algebra automorphism

(9.41) θs :=
⊕

k>0

sk id|Nk
∈ Aut(N ) .

As a consequence, if t ∈ IF∗ admits a d th root in IF, the pointings ω and tω differ by an
automorphism of N .

We mention that the PANA N associated with the nil-polynomial f = ω + q + c
considered in Proposition 9.36 also has a grading: Indeed, put N1 := W1, N2 := W2 and
A := N3 := IF with products given by xy := x·y if x, y ∈ W1 and xy := ω2(x, y) if
x ∈W1, y ∈W2. Using this we can improve the second statement in 9.36.

PANAs N admitting a grading enjoy a special property: It is easy to see as a con-
sequence of (9.39) that for every associated nil-polynomial f ∈ IF[x1, . . . , xn] there exist
linear forms λ1, . . . , λn on IFn with

(9.42) f =
n∑

k=1

λk ∂f/∂xk
.

9.43 Proposition. With the notation of Proposition 9.36 assume that the cubic form c on
W1 has the following property:
(∗) z = 0 is the only element z ∈W1 with c(x+ z) = c(x) for all x ∈W1.
The graded PANA N = W1 ⊕W2 ⊕ IF with product (x, y) 7→ xy corresponding to the
nil-polynomial f = q + c on W then satisfies N 2 = W2 ⊕ IF as a consequence of (∗).
Furthermore, if c̃ is a second cubic form on W1 with nil-polynomial f̃ = q + c̃ and PANA
Ñ = W1 ⊕W2 ⊕ IF with appropriate product, the following conditions are equivalent.

(i) The nil-polynomials f , f̃ are equivalent.
(ii) The algebras N , Ñ are isomorphic as abstract algebras.

(iii) f̃ = f ◦ g for some g ∈ GL(W1).
Proof. Let ω : W ⊕ IF → IF be the canonical projection. Then ω is a pointing for N . As
in (9.27) define the ωk for the nil-polynomial f = f[2] + f[3] on W . We have to show that
{x·y : x, y ∈ W1} spans W2. If not, there exists a vector z 6= 0 in W1 with ω2(x·y, z) = 0
for all x, y ∈ W1. But then ω3(x, y, z) = 0 for all x, y ∈ W1 implies c(x + z) = c(x) for
all x ∈W1, a contradiction.

(i) ⇐⇒ (ii) This follows immediately from Definition 9.26.

(iii) =⇒ (i) This follows immediately from the second claim in Proposition 9.36.

(ii) =⇒ (iii) Let h : N → Ñ be an algebra isomorphism. Then h(W2⊕IF) ⊂ Ñ 2 ⊂ (W2⊕
IF) as a consequence of (∗), that is, there is a g ∈ GL(W1) with h(x) ≡ g(x)modN 2 for
all x ∈ W1. By the second statement in Proposition 9.36 we may assume g = id without
loss of generality. But then c̃(x) = c(h(x)) = c(x) for all x ∈W1 implies f̃ = f .

Suppose that W1
∼= IFm with coordinates (x1, . . . , xm) has dimension m > 0 in

Proposition 9.43. Then W ∼= IF2m with coordinates (x1, . . . , xm, y1, . . . , ym) and we may
assume q(x, y) = x1y1+ . . .+xmym. As already mentioned, the linear space C of all cubic
forms c on W1 has dimension

(
m+2

3

)
. The subset C∗ of all c ∈ C satisfying the condition

(∗) in Proposition 9.43 is Zariski open and dense in C . The group GL(W1) acts on C∗

from the right and has dimension m2 over IF. The difference of dimensions is
(
m
3

)
. But this

number is also the cardinality of the subset J ⊂ IN3, consisting of all triples j = (j1, j2, j3)
with 1 ≤ j1 < j2 < j3 ≤ m. Consider the affine map

(9.44) α : IFJ → C , (tj) 7→ c0 +
∑

j∈J

tjcj ,
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where c0 := x3
1 + . . .+ x3

m ∈ C∗ and cj := xj1xj2xj3 ∈ C for all j ∈ J .

In case IF = IR or IF = C, for a suitable neighbourhood U of 0 ∈ IFJ the map
α : U → C∗ intersects all GL(n, IF)-orbits in C∗ transversally. Indeed, since all partial
derivatives of c0 are monomials containing a square, the tangent space at c0 of its GL(n, IF)-
orbit is transversal to the linear subspace 〈cj : j ∈ J〉 of C . In particular, in casem ≥ 3 there
is a family of dimension

(
m
3

) ≥ 1 over IF (= IR or C) of pairwise different GL(n, IF)-orbits
and thus of non-equivalent nil-polynomials of degree 3 on W . Notice that in case m = 3
the mapping α in (9.44) reduces to

α : IF → C , t 7→ x3
1 + x3

2 + x3
3 + tx1x2x3 .

We apply Proposition 9.22 to the examples considered in Proposition 9.36. Here V =
W1⊕W2⊕ IF, q is a quadratic form on W := W1⊕W2 and c is a cubic form on W1. With
the extended nil-polynomial f(x, y, t) = t+ q(x+ y) + c(x) on W1 ⊕W2 ⊕ IF consider
the hypersurface

F := {z ∈ V : f(z) = 0}
and identify IF with the line {0} ⊕ IF in W ⊕ IF. Then the affine group Aff(F ) is transitive
on F by Proposition 9.22, and every orbit in V intersects the line IF. For every s ∈ IF∗ the
transformation θs, see (9.41), satisfies f ◦ θs = s3h for every s ∈ IF∗, that is, θs ∈ Aff(F ).
As a consequence, the number of Aff(F )-orbits in V is bounded by the number of (IF∗)3-
orbits in IF. In particular, if (IF∗)3 = IF∗, then there are precisely two Aff(F )-orbits in V ,
namely F and its complement. This situation occurs, for instance, for IF = IR and also for
IF = C. In any case, F is the only Zariski closed Aff(F )-orbit in V , and every other orbit
is Zariski dense.

Nil-polynomials of degree 4
The method in Proposition 9.36 can be generalized to get nil-polynomials of higher

degree, say of degree 4 for simplicity. Throughout the subsection we use the notation (9.1).

Let W = W1 ⊕ W2 ⊕ W3 be a vector space with W1 = IFn, W2 = IFm and let
q be a fixed non-degenerate quadratic form on W in the following. Assume that W1, W3

are totally isotropic and that W1 ⊕W3, W2 are orthogonal with respect to q. Then W has
dimension 2n+m, and without loss of generality we assume that

q(y) =
m∑

k=1

εky
(2)
k for suitable εk ∈ IF∗ and all y ∈W2 .

As before let C be the space of all cubic forms on W . Our aim is to find cubic forms c ∈ Cq

that are the cubic part of a nil-polynomial of degree 4.

Denote by C ′ the space of all cubic forms c on W1 ⊕ W2 such that c(x + y) is
quadratic in x ∈W1 and linear in y ∈W2, or equivalently, which are of the form

c(x+ y) =
1
2

m∑

k=1

n∑

i,j=1

cijkxixjyk for all x ∈W1, y ∈W2

with suitable coefficients cijk = cjik ∈ IF. Extending every c ∈ C ′ trivially to a cubic form
on W we consider C ′ as subset of C .

For fixed c ∈ C ′ the symmetric 2- and 3-linear forms ω2, ω3 on W are defined by
ω2(x, x) = 2q(x) and ω3(x, x, x) = 6c(x) for all x ∈ W . With the commutative product
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x·y on W , see (9.28), define in addition also the k-linear forms ωk by (9.32) for all k ≥ 4.
Then, for every x, y ∈ W1 the identity ω2(x·y, t) = ω3(x, y, t) = 0 for all t ∈ W1 ⊕W3

implies x·y ∈ W2, that is W1·W1 ⊂ W2. In the same way ω2(x·y, t) = 0 for all x ∈ W1,
y ∈W2 and t ∈W2⊕W3 impliesW1·W2 ⊂W3. AlsoWj ·Wk = 0 follows for all j, k with
j + k ≥ 4. Therefore c belongs to Cq if and only if (a·b)·c = a·(b·c) for all a, b, c ∈W1.

In terms of the standard basis e1, . . . , em of W2 = IFm we have

a·b =
m∑

k=1

( n∑

i,j=1

ε−1
k cijkaibj

)
ek for all a, b ∈W1

and thus with Θi,j,r,s :=
∑m

k=1 ε
−1
k cijkcrsk we get the identity

ω2

(
(a·b)·c, t) = ω3(a·b, c, t) = ω2(a·b, c·t)

=
n∑

i,j,r,s=1

Θi,j,r,s aibjcrts for all a, b, c, t ∈W1 .

Therefore,

(9.45) A := C ′ ∩ Cq = {c ∈ C ′ : Θi,j,r,s is symmetric in i, r} .

Notice that the condition in (9.45) implies that Θi,j,r,s is symmetric in all indices. A is a ra-
tional subvariety of the linear space C ′, it consists of all those c for which the corresponding
product x·y on W is associative.

For every c ∈ A the corresponding nil-polynomial f on W has the form

f = f[2] + f[3] + f[4] with f[2] = q, f[3] = c and

f[4](z) =
1
12

q(x·x) for all z = (x, y, t) ∈W1 ⊕W2 ⊕W3 .

The group Γ := GL(W1) × O(q|W2) ⊂ GL(W1 ⊕W2) acts on C ′ by c 7→ c ◦ γ−1 for
every γ ∈ Γ. Furthermore, (g, h) 7→ (g, h, (g])−1) embeds Γ into O(q), compare the proof
of Proposition 9.36. As a consequence, the subvariety A ⊂ C ′ is invariant under Γ.

For every c ∈ A the corresponding nil-polynomial comes from a graded PANA with
nil-index 4, provided c 6= 0. Indeed, put W4 := IF and endow W ⊕W4 with the product
(9.29). It is obvious that the linear span of W1·W1 in W2 has dimension ≤ (

n+1
2

)
.

Let us consider the special case n = 2 with m =
(
n+1

2

)
= 3 in more detail. For

simplicity we assume that for suitable coordinates (x1, x2) of W1, (y1, y2, y3) of W2 and
(z1, z2) of W3 the quadratic form q is given by

(9.46) q = x1z1 + x2z2 + y
(2)
1 + y

(2)
2 + εy

(2)
3 for fixed ε ∈ IF∗

(in case IF = IR,C this is not a real restriction). For every t ∈ IF consider the cubic form

ct := (x(2)
1 + x

(2)
2 )y1 + x1x2y2 + tx

(2)
2 y3

on W1 ⊕W2. A simple computation reveals that every ct is contained in A = C ′ ∩ Cq . The
corresponding nil-polynomial (depending on the choice of ε) then is

ft = q + ct + dt with dt := x
(4)
1 + x

(2)
1 x

(2)
2 + (1 + ε−1t2)x(4)

2 .
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In addition we put
f∞ := q + x

(2)
2 y3 + ε−1x

(4)
2

(a smash product with the cyclic nil-polynomial of degree 4, see Table 1), where ∞ in the
projective line IP1(IF) = IF ∪ {∞} is the point at infinity. Notice that for t ∈ IF∗ the
nil-polynomials ft and f̃1/t := q + t−1ct + t−2dt are equivalent.

It is obvious that ft is equivalent to f−t for every t ∈ IP1(IF). Also, for every cubic
term ct with t ∈ IF∗ the set W1·W1 spans W2. For t = 0,∞ the linear span of W1·W1

in W2 has dimension 2, 1 respectively. For every t ∈ IF∗ an invariant of dt is the number
φ(t) := g2(dt)3/g3(dt)2 = ε2t−4(4+ε−1t2)3 ∈ IF, where g2, g3 are the classical invariants
of binary quartics, compare [19] p. 27. Since every fiber of φ : IF∗ → IF contains at most 6
elements we conclude

9.47 Proposition. For every Field IF and every fixed ε ∈ IF∗ the set of all equivalence
classes given by all nil-polynomials ft, t ∈ IF, has the same cardinality as IF and, in partic-
ular, is infinite.

Remarks 1. In case IF = Q is the rational field there are infinitely many choices of ε ∈ Q∗

leading to pairwise non-equivalent quadratic forms q in (9.46). For each such choice there
is an infinite number of pairwise non-equivalent nil-polynomials ft of degree 4 over Q.

2. In case IF = IR is the real field there are essentially the two choices ε = ±1. In case
ε = 1 the form q has type (5, 2) and all nil-polynomials ft with 0 ≤ t ≤ √

8 are pairwise
non-equivalent. In case ε = −1 the form q has type (4, 3) and all ft with 0 ≤ t ≤ ∞ are
pairwise non-equivalent.

3. Nil-polynomials of degree ≥ 5 can be constructed just as in the case of degrees 3 and 4
as before. As an example we briefly touch the case of degree 5: Fix a vector space W of
finite dimension over IF together with a non-degenerate quadratic form q on W . Assume
furthermore that there is a direct sum decomposition W = W1 ⊕ W2 ⊕ W3 ⊕ W4 into
totally isotropic subspaces such that W1⊕W4 and W2⊕W3 are orthogonal. Then consider
a cubic form c on W that can be written as a sum c = c ′ + c ′′ of cubic forms with the
following properties: c ′ is a cubic form on W1⊕W3 (trivially extended to W ) that is linear
in the variables of W3 while c ′′ is a cubic form on W1 ⊕W2 that is linear in the variables
of W1. Denote by x·y the commutative product on W determined by q and c . If we put
Wk := 0 for all k > 4 we have Wj ·Wk ⊂ Wj+k for all j, k. Therefore, c ∈ Cq if and only
if the product x·y on W is associative, see (9.35) for the notation. This is true without any
assumption if c = c ′ or c = c ′′. But W1·W1 = 0 in the first and W2·W2 = 0 in the latter
case. On the other hand, the nil-polynomial associated to c ∈ Cq has degree 5 if W2·W2

spans W4 and W1·W1 6= 0.

Affine homogeneity

In this subsection let IF be either IR or C. Also letN 6= 0 be an arbitrary commutative
associative nilpotent algebra of finite dimension over IF. In addition we assume that there
exists a Z-gradation

N =
⊕

k>0

Nk , NjNk ⊂ Nj+k .

Let d := max{k : Nk 6= 0} and denote by π : N → Nd the canonical projection with
kernel K :=

⊕
k<dNk. We do not require that Nk 6= 0 for all 1 ≤ k ≤ d nor that Nd is

the annihilator or has dimension 1. Extending π linearly to N 0 by π(11) = 0 we have the
polynomial map f := π ◦ exp : N → Nd. The submanifold F := f −1(0) then is the graph
of a polynomial map K → Nd and K = T0F is the tangent space to F at the origin. We
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are interested in the affine group Aff(F ) = {g ∈ Aff(N ) : g(F ) = F} and its subgroup
A = A(f ) := {g ∈ Aff(N ) : f ◦ g = f }.

Every point x ∈ N has a unique representation x = x1 + . . . + xd with xk ∈ Nk.
Consider on N the linear span a of all nilpotent affine vector fields of the form

(d− j)αj∂/∂xj
−

d−j∑

k=1

kαjxk ∂/∂xj+k
with 1 ≤ j < d and αj ∈ Nj .

As an example, in caseN ∼= IF4 is the cyclic PANA of nil-index 4, see Table 1, we have d = 4,
f (x) = x4 + x1x3 + x

(2)
2 + x

(2)
1 x2 + x

(4)
1 , and a is the linear span of the vector fields

3 ∂/∂x1
− x1 ∂/∂x2

− 2x2 ∂/∂x3
− 3x3 ∂/∂x4

2 ∂/∂x2
− x1 ∂/∂x3

− 2x2 ∂/∂x4

∂/∂x3
− x1 ∂/∂x4

.

With some computation we get:

9.48 Lemma. a is a nilpotent Lie algebra and the evaluation map εa : a → N , ξ 7→ ξa, is
injective for every a ∈ N . In particular, all orbits in N of the nilpotent subgroup exp(a) ⊂
Aff(N ) have the same dimension.
9.49 Proposition. a f = 0, that is, exp(a) ⊂ A(f). In particular, A(f ) acts transitively on
every c+ F = f −1(c), c ∈ Nd.

Proof. Put ξ := (d− j)α∂/∂xj
− ∑d−j

k=1 kαxk ∂/∂xj+k
for fixed 1 ≤ j < d and α ∈ Nj .

Then
ξf =

∑
cναx

(ν1)
1 x

(ν2)
2 · · ·x(νd)

d ,

where the sum is taken over all multi indices ν ∈ INd with ν1 + 2ν2 + . . . + dνd = d − j
and cν certain rational coefficients. Now fix such a multi index ν. For simpler notation we
put x(−1) := 0 for every x ∈ N . Then we have

cνα x
(ν1)
1 x

(ν2)
2 · · ·x(νd)

d
= (d− j)α∂/∂xj

(
x
(ν1)
1 · · ·x(νj+1)

j · · ·x(νd)
d

)
−

d−j∑

k=1

kαxk
∂/∂xj+k

(
x
(ν1)
1 · · ·x(νk−1)

k
· · ·x(νj+k+1)

j+k
· · ·x(νd)

d

)

=
(
d− j −

d−j∑

k=1

kνk

)
α x

(ν1)
1 x

(ν2)
2 · · ·x(νd)

d
= 0

since νk = 0 for k > d− j.

Next we specialize to the case whereNd has dimension 1, that is, F is a hypersurface
in N (we still do not require that Nd is the annihilator of N although contained in it). For
every s ∈ IF∗ we have the semi-simple linear transformation

θs :=
⊕

k>0

sk id|Nk
∈ GL(F )

satisfying f ◦ θs = sdf . As a consequence we have that the group Aff(F ) has at most
3 orbits in N . In case d odd or IF = C this group has only two orbits in N , the closed
hypersurface F and the open complement N\F . As in the subsection 8.3 we get in case
IF = C further affinely homogeneous real surfaces.
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