Hilbert's Axioms

CHAPTER

= ur purpose in this chapter is to present (with minor
5| modifications) a set of axioms for geometry proposed
by Hilbert in 1899. These axioms are sufficient by
i modern standards of rigor to supply the foundation
| for Euclid’s geometry. This will mean also axiomatiz-
ing those arguments where he used intuition, or said
nothing. Tn particular, the axioms for betweenness,
== based on the work of Pasch in the 1880s, are the most
1 striking innovation in this set of axioms.

been to take the SAS theorem as an axiom, and thus
bypass the method of superposition. It is possible to go the other route, and use
motions of figures as a basic building block of geometry. This is what Hadamard
does in his Legons de Géometrie Elémentaire (1901-06), but the result is a step
backward in logical clarity, because he never makes precise exactly what kind of
motions he is allowing. See, however, Section 17 for a fuller discussion of rigid
motions and SAS. . .

The first benefit of establishing the new system of axioms is, of course, to
vindicate Fuclid's Elements, and thus establish “Euclidean” geometry as a rigo-
rous mathematical discipline. A second benefit is to pose carefully those prob-
MmEm that have bothered geometers for centuries, such as the question of the
independence of the parallel postulate. Unless one has an exact understanding
o.m brecisely what is assumed and what is not, one risks going around in circles
mymocmmwsm these questions. In the development of our geometry with the new
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axioms, we will keep the parallel postulate separate and note carefully what
depends on it and what does not.

Besides presenting the axioms, this chapter will also contain the first con-
sequences of the axioms, including different proofs of some of Euclid’s early
propositions, until we have established enough so that Euclid’s later results can
be deduced without difficulty from the new foundations we have established. In
Sections 10, 11, 12, we show how to recover all the results of Euclid, Books I-1V,

2

except for the theory of area, whose proof is postponed until Chapter 5.

6 Axioms of Incidence

The axioms of incidence deal with points and lines and their intersections. The
points and lines are undefined objects. We simply postulate a set, whose ele-
ments are called points, together with certain subsets, which we call lines. We do
not say what the points are, nor which subsets form lines, but we do require that
these undefined notions obey certain axioms:

I1. For any two distinct points A, B, there exists a unique line I containing A, B.

12. Every line contains at least two points.

I3. There exist three noncollinear points (that is, three points not all contained
in a single line).

Definition v

A set whose elements are called points, together with a set of subsets called
lines, satisfying the axioms (11), (12), (I3), will be called an incidence geometry.
If a point P belongs to a line I, we will say that P lies on I, or that I passes
through P.

From this modest beginning we cannot expect to get very interesting results,
but just to illustrate the process, let us see how one can prove theorems based
on these axioms.

Froposition 6.1
Two distinet lines can have at most one point in cOMmon.

Proof Let1,mbe two lines, and suppose they both contain the points A, B, with
A = B. According to axiom (I1), there is a unique line containing both A and B,
so I must be equal to m.

Note that this fact, which was used by Euclid in the proof of (1.4) with the
rather weak excuse that :w%o lines cannot enclose a space,” follows here from
the uniqueness part of axiom (I1). This should indicate the importance of stat-




Definition
Two distinct lines are parallel if they have no points in common. We also say
that any line is parallel to itself.

The parallel postulate, in its equivalent form given by Playfair, can be stated
3s a further axiom about incidence of lines. However, we do not include this
axiom in the definition of incidence geometry. Thus we may speak of an inci-
dence geometry that does or does not satisfy Playfair's axiom.

P. (Playfair's axiom, also called the parallel axiom). For each point A and each
ine I, there is at most one line containing A that is parallel to [.

Note that the real Cartesian plane (6.1.1) satisfies (P), as you know, and the
hree-point geometry (6.1.2) satisfies (P) vacuously, because there are no distinct

»arallel lines at all. Next we give an example of an incidence geometry that does
10t satisfy (P).

xample 6.1.3 A

€t our set consist of five points A,B,C,

J,E, and let the lines be all subsets of £

w0 points. It is easy to see that this ge-

metry satisfies (11)-(I3). However, it

0¢s not satisfy (P), because, for exam-

le, AB and AC are two distinct lines

rough the point A and parallel to the

ne DE. D c

Remember that the word parallel simply means that two lines have no points
! common or are equal. It does not say anything about being in the same
rection, or being equidistant from each other, or anything else.

We say that two models of an axiom system are isomorphic if there exists a
to-1 correspondence between their sets of points in such a way that a subset
“the first set is a line if and only if the corresponding subset of the second
t is a line. For short, we say “the "correspondence takes lines into lines.”
» for example, we see that (6.1.1), (6.1.2), and (6.1.3) are nonisomorphic models
‘incidence geometry, for the simple reason that their sets of points have dif-
rent cardinality: There are no 1-to-1 correspondences between any of these
ts.

On the other hand, we can show that any model of incidence geometry
ving just three points is isomorphic to the model given in (6.1.2). Indeed, let
»2, 3} be a geometry of three points. By (13),.there must be three noncollinear
ints. Since there are only three points here, we conclude that there is no
«© containing all three. But by (I1), each subset of two points must be cor-
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tained in a line. Thus {1, 2}, {2,3}, and {1, 3} are lines. Now by (12), every line
contains at least two points, so these are al] the possible lines, In other words
the lines are just all subsets of two elements. Since (6.1.2) also has this :

10
any 1-to-1 correspondence between the sets {A,B,C} and {1,2,3 «E% m%mﬂﬁ
isomorphism, i

By the way, this proof shows that the isomorphism Jjust found is not unique

There are six choices. This leads to the notion of automorphism,

Definition

* An automorphism of an incidence geometry is an isomorphism of the geometry

with itself, that is, it is a 1-to-1 mapping of the set of points onto itself, preserving
lines. .

Note that the composition of two automorphisms is an automorphism, and
so is the inverse of an automorphism. Thus the set of automorphisms wombgm a
group. In the example above, any 1-to-1 mapping of the set of three elements
onto itself gives an automorphism of the geometry, so we see that the group of
automorphisms of this geometry is the symmetric group on three letters, §;.

An important question about a set of axioms is whether the axioms are inde-
pendent of each other. That is to say, that no one of them can he proved as a
consequence of the others. For if one were a consequence of the others, then we
would not need that one as an axiom. To try to prove directly that axiom A is
not a consequence of axioms B,C,D,... is usually futile. So instead, we search

fon of what is involved, let us show that the axioms (11), (12), (13), and (P) are
ndependent.

Hu.n....oﬂcmmmoﬁ 6.2
Fhe axioms (1), (12), (13), (P) are independent of each other.

Hﬂﬂw We have already seen that (6.1.3) is a model satistying (I1), (12), (I3), and
o ). Hence (P) is independent of the others.

the ora model satisfying (11), (12), (P), and not (13), take a set of two points and
= one line Containing hoth of them.

NOte that (P) is satisfied trivially, be- A B

Causp g
mEum.w there are no points not on the ®




For a model satisfying (I1), (13), (P), A

and not (12), take a set of three points

A,B,C, and for lines take the subsets

{A,B}, {A,C} {B,C}, and {A}. The ex-

istence of the one-point line {A} con- B C
tradicts (12). Yet (P) is still fulfilled, L4 A\
because that one-point line is then the

unique line through A parallel to {B, C}.

For a model satisfying (12), (13), (P) A .
and not (I1), just take a set of three
points and no lines at all. o o C

While we are discussing axiom systems, there are a few more concepts we
should mention. An axiom system is consistent if it will never lead to a contra-
diction. That is to say, if it is not possible to prove from the axioms a statement
A and also to prove its negation not A. This is obviously a highly desirable
property of a system of axioms. We do not want to waste our time proving theo-
rems from a system of axioms that one day may lead to a contradiction. Un-
fortunately, however, the logician Kurt Gédel has proved that for any reasonably
rich set of axioms, it will be impossible to prove the consistency of that system.
So we will have to settle for something less, which is relative consistency. As soon
as you can find a model for your axiom system within some other mathematical
theory T, it follows that if T is consistent, then also your system of axioms is
consistent. For any contradiction that might follow from your axioms would
then also appear in the theory T, contradicting its consistency. So for example,
if you believe in the consistency of the theory of real numbers, then you must
accept the consistency of Hilbert's axiom system for geometry, because all of his
axioms will hold in the real Cartesian plane. That is the best we can do about the
question of consistency.

Another question about a system of axioms is whether it is categorical. This
means, does it describe a unique mathematical object? Or in other words, is
there a unique model (up to isomorphism) for the system of axioms? In fact, it
will turn out that if we take the entire list of Hilbert's axioms, including the par-
allel axiom (P) and Dedekind's axiom (D), the system will be categorical, and the
unigque model will be the real Cartesian plane. (We will prove this result later
(21.3).) Also, if we take all of Hilbert’s axioms, together with (D) and the hypet-
bolic axiom (L) (see Section 40), we will have another categorical system, whose
unique model is the non-Euclidean Poincaré model over the real numbers (Ex-
ercise 43.2).

However, from the point of view of this book, it is more interesting to have
an axiom system that is not categorical, and then to investigate the different
possible geometries that can arise. Therefore, we will almost never assume
Dedekind’s axiom (D), and we will only sometimes assume Archimedes’ axiot
(A), or the parallel axiom (P).

Finally, one can ask whether the axiom system is aAo:\%NmRv SEMW Eowswv ommw
every statement that is true in every Hﬁom& of the axiom system be prove w
consequence of the axioms? Again, Godel has shown that mSM Bﬁowbmﬂo wﬁﬁ em
of reasonable richness cannot be complete. For a .@EQ discussion of these
questions, see Chapter 51 of Kline (1972) on the foundations of mathematics.

Exercises

6.1 Describe all possible incidence geometries on a set .om four points, up to iso-
morphism. Which ones satisfy (P)?

6.2 The Cartesian plane over & field F. Let F be any field. H.me.%m set F? of ordered

. pairs of elements of the field F to be the set of poinis. Define lines to be those subsets

defined by linear equations, as in Example 6.1.1. Verify that the mﬁogm. (11), (12),
(13), and (P) hold in this model. (See Section 14 for more about Cartesian planes

over fields.)
6.3 A projective plane is a set of points and subsets called lines that satisfy the following
four axioms:

P1. Any two distinct points lieona Eﬁ@ﬁm.ﬁzm.
P2. Any two lines meet in at Jeast one point.
P3. Every line contains at least three points.
P4. There exist three noncollinear points.

Note that these axioms imply (11)-(I3), so that any projective plane is also an inci-
dence geometry. Show the following:

(a) Every projective plane has at least seven points, and there exists-a model of a
projective plane having exactly seven points.

(b) The projective mwmﬁm of seven points is unique up to isomorphism.
(c) The axioms (P1), (P2), (P3), (P4) are independent.

6.4 Let Fhe a field, and let V=F°be a three-dimensional vector space oﬂwﬁ ﬁ” hmﬁ:M WM
the set of 1-dimensional subspaces of V. We will call the elements o.m I1 “points. o&
“point” is a 1-dimensional subspace P < V.IfweVis mvm-&a.s@:muoﬁ& mﬂww”@%gmmmmﬁ
V, then the set of all “points” contained in W will be omﬁa@ a “line. mﬁoﬁ t mmwv
IT of “points” and the subsets of “lines” forms a projective plane (Exercise 6.3)-

. a il
6.5 An affine plane is a set of points and subsets called lines satisfying (11), (12), (13), an
the following stronger form of Playfair's axiom.

P’. For every line I, and every point A, there exists a unique line m containing

and parallel to L

ints (i.e-
(a) Show that any two lines in an affine plane have the same number of points (

there exists a 1-to-1 correspondence between the points of the two lines)-



(b) If an affine plane has a line with exactly n points, then the total number of
points in the plane is n?.

(c) If Fis any field, show that the Cartesian plane over F (Exercise 6.2) is a model of
an affine plane.

(d) Show that there exist affine planes with 4, 9, 16, or 25 points. (The nonexistence
of an affine plane with 36 points is a difficult result of Euler.)

In an incidence geometry, consider the relationship of parallelism, “1 is parallel to
m," on the set of lines.

(a) Give an example to show that this need not be an equivalence relation.
(b) If we assume the parallel axiom (P), then parallelism is an equivalence relation.

(c) Conversely, if parallelism is an equivalence relation in a given incidence geom-
etry, then (P) must hold in that geometry.

Let II be an affine plane (Exercise 6.5). A pencil of parallel lines is the set of all the
lines parallel to a given line (including that line itself). We call each pencil of paral-
lel lines an “ideal point,” or a “point at infinity,” and we say that an ideal point ‘lies
on” each of the lines in the pencil. Now let I1’ be the enlarged set consisting of 11
together with all these new ideal points. A line of I will be the subset consisting of
a line of II plus its unique ideal point, or a new line, called the “line at infinity,”
comnsisting of all the ideal points.

(a) Show that this new set I1' with subsets of lines as just defined forms a projective
plane (Exercise 6.3).

(b) If II is the Cartesian plane over a field F (Exercise 6.2), show that the associated
projective plane I1’ is isomorphic to the projective plane constructed in Exercise
6.4.

If there are n + 1 points on one line in a projective plane II, then the total number
of points in ITis n* + n+1.

Kirkman's schoolgirl problem (1850) is as follows: In a certain school there are 15
girls. It is desired to make a seven-day schedule such that each day the girls can
walk in the garden in five groups of three, in such a way that each girl will be in the
same group with each other girl just once in the week. How should the groups be
formed each day? :

To make this into a geometry problem, think of the girls as points, think of the
groups of three as lines, and think of each day as déscribing a set of five lines, which
we call a pencil. Now consider a Kirkman geometry: a set, whose elements we call
points, together with certain subsets we call lines, and certain sets of lines we call
pencils, satisfying the following axioms:

K1. Two distinct points lie on a unique line.

K2. All lines contain the same number of points.
K3. There exist three noncollinear points.

K4. Each line is contained in a unique pencil.

K5. Each pencil consists of a set of parallel lines whose union is the whole set
points.

(a) Show that any affine plane gives a Kirkman geometry where we take the pencils
to be the set of all lines parallel to a given line. (Hence by Exercise 6.5 there exist
Kirkman geometries with 4, 9, 16, 25 points.)

(b) Show that any Kirkman geometry with 15 points gives a mo.Hsmos of the original
schoolgir] problem.

(c) Find a solution for the original problem. (There are many inequivalent solutions
to this problem.)

6.10 In a finite incidence geometry, the number of lines is greater than or equal to the
number of points. -

7 Axioms of Betweenness

In this section we present axioms to make precise the notions of betweenness
(when one point is in between two others), on which is based the notion of
sidedness (when a point is on one side of a line or the other), the concepts of
inside and outside, and also the concepts of order, when one segment or angle is
bigger than another. We have seen the importance of these concepts in reading
Euclid's geometry, and we have also seen the dangers of using these concepts
intuitively, without making their meaning precise. So these axioms form an
important part of our new foundations for geometry. At the same time, these
axioms and their consequences may seem difficult to understand for many
readers, not because the mathematical concepts are technically difficult, but
because the notions of order and separation are so deeply ingrained in our daily
experience of life that it is difficult to let go of our intuitions and replace them
with axioms. It is an exercise in forgetting what we already know from our inner
nature, and then reconstituting it with an open mind as an external logical
structure.

Throughout this section we presuppose axioms (I1)-(I3) of an incidence
geometry. The geometrical notions of betweenness, separation, sidedness, and
arder will all be based on a single undefined relation, subject to four axioms. We
Postulate a relation between sets of three points A, B, C, called “B is between A
and C." This relation is subject to the following axioms.

B1. IEB is between A and C, (written A x B x C), then A, B, C are three distinct
o Points on a line, and also C* B * A.
+ For any two distinct points A, B, there exists a point C such that A * B* C.

3. Given three distinct points on a line, one and only one of them is between
_.H_.Mm OE@H two.



B4. (Pasch). Let A,B,C be three non-
collinear points, and let [ be a line
not containing any of A,B,C. If I
contains a point D lying between
A and B, then it must also contain
either a point lying between A and
C or a point lying between B and C,
but not both.

Definition

If A and B are distinct points, we define the line segment AB to be the set con-
sisting of the points A, B and all points lying between A and B. We define a tri-
angle to be the wunion of the three line segments AB,BC, and AC whenever
A, B, C are three noncollinear points. The points A, B, C are the vertices of the

triangle, and the segments AB, BC, AC are the sides of the triangle.

Note: The segments AB and BA are the same sets, because of axiom (B1). The
endpoints A, B of the segment AB are uniquely determined by the segment AB

(Exercise 7.2). The vertices A, B, C, and the sides AB,AC,BC of a triangle ABC
are uniquely determined by the triangle (Exercise 7.3). »

With this terminology, we can rephrase (B4) as follows: If a line I that does
not contain any of the vertices A, B, C of a triangle meets one side AB, then it
must meet one of the other sides AC or BC, but not both. :

From these axioms together with the axioms of incidence (11)-(13) we will
deduce results about the separation of the plane by a line, and the separation of
a line by a point. ‘ .

Proposition 7.1 (Plane separation)
Let I be any line. Then the set of points not lying on [ can be divided into two non-
empty subsets 8y, S, with the following properties:

(a) Two points A, B not on [ belong to the . %
same set mH or 83) if and only if the A
segment AB does not intersect 1.
(b) Two points A, C not on 1 belong to the
opposite sets (one in &, the other in
Sy) if and only if the segment AC in- A
tersects 1 in a point.

We will refer to the sets Sy,S; as the
two sides of 1, and we will say “A and B
are on the same side of ,” or “A and C
are on opposite sides of .” C

s &

Proof We start by defining a relation ~ among ‘points not on I. We will s
A ~ B if.either A = B or if the segment AB does not meet 1. Our first step is MM
show that ~ is an’equivalence H,&|m&od. Clearly. A ~ A by definition, and A ~ B
implies B ~ A because the set AB does not depend on the order in which we
write A and B. The nontrivial step is to show the relation is transitive: IfA~B
and B ~ C, we must show A ~ C.

Case 1. Suppcge A,B,C are not col- A
linear. Then we consider the triangle
ABC. Since A ~ B, 1 does not meet AB.
Since B ~ C, | does not meet BC. Now
by Pasch’s axiom (B4), it follows that I e
does not meet AC. Hence A ~ C.

Case 2 Suppose A, B, C lie on a line m.
Since A, B, C do not lie on [, the line m is
different from:I. Therefore I and m can
meet in at most-one point (6.1). But by
(12) every line has at least two points.
Therefore, there exists a point D on [,D
not lying on m.

Now apply axiom (B2) to find a point E-such that D« A % E. Then D,A.E
are collinear (B1); hence E is not on I, since A'is not on I, and the line DAE
already meets [ at the point D. Furthermore, the segment AE cannot meet L. For
if it did, the intersection point would be the unique point in which the line AE
meets I, namely D. In that case D would be between A and E. But we con-
situicted E so that D* A % E, so by (B3), D cannot lie between A and E. Thus

AEN =, so A ~ E. Note also that E does not'lie on the line m, because if B

Were on m, then the'line AE would be equal to m, so D would lie on m, contrary
10 our choice of D: Therefore, A,B,E are three noncollinear points. Then by
D.mm.a 1 proved above, from A ~ E and A ~ B we conclude B ~ E. By Case 1
dgai, from B ~ E and B ~ C we conclude C ~ E. Applying Case 1 a third time to
i three noncollinear points A, C,E, from A ~ E and C ~ E we conclude A ~ C
48 Teguired.

.H.rsw we have proved that ~ is an equivalence relation. An equivalence
w.ne&uoﬁ on a set divides that set into a disjoint union of equivalence classes,
MM% Emmm, m&ﬁ&&mﬂom classes will satisfy property (a) by definition. To complete
nmwm%wwmo% it will be sufficient to show that there are exactly %o.m@ﬁ&mwowom
) 1 ﬂH ) .mw for the relation ~. Then to say that AG meets I, which is equivalent

wﬂ.ﬂw will be LE.@ same as saying that A, G belong to the opposite sets.

8. Ow,w J there exists point not on 1, so there is at least one equivalence class
N4 €8, let D'be any point on I, and choose by (B2) a point G such that



AxD=#C. Then A and C do not satisfy ~, so there must be at least two equiva-
lence classes S; and S,.

The last step is to show that there are at most two.equivalence classes. To do
this, we will show that if A + C and B + C, then A ~ B.

Case 1 If A,B,C are not collinear, we
consider the triangle ABC. From A + C
we conclude that AC meets I From

B+ C we conclude that BC meets [

Now by Pasch's axiom (B4) it follows cC

that AB does not meet I. So A ~B as
required.

Case 2 Suppose A, B, C lie on a line m. E
As in Case 2 of the first part of the proof
above, choose a point D on I, not on m, A
and use (B2) to get a point E with £
D+A%E. Then A ~E as we showed \\ D
above. c

Now, A + C by hypothesis, and A ~ E, so we conclude that C + E, since ~ is
an equivalence relation (if C ~ E, then A ~ C by transitivity: contradiction).
Looking at the three noncollinear points B,C,E, from E + C and B+ C we
conclude using Case 1 that B ~ E. But also A ~ E, so by transitivity, A ~ B as
required.

Proposition 7.2 (Line separation)
Let A be a point on a line 1. Then the set of points of I not equal to A can be divided
into two nonempty subsets Si, Sz, the two sides of A on 1, such that

(a) B, C are on the same side of A if and
v only if A is not in the segment BC; D A ) c
(b) B, D are on opposite sides of A if L
and only if A belongs to the segment
" BD.

Py 2. & Py

~ Proof Given the line [ and a point A on
I, we know from (I3) that there exists a
point E not on I. Let m be the line con-
taining A and E. Apply (7.1) to the line
m. If m has two sides 81, 8}, we define §;
and S, to be the intersections of §; and
8, with 1. Then properties (a) and (b)
follow immediately from the previous
proposition.

3

The only mildly nontrivial part is to show that 8; and Sz are nonempty. B
(12), there is a point B-on I different from A. And'by (B2) there exists a ﬁow.# W
such that B * A +D. Then D will be on the opposite side of A from B, and will 1
on I,.s0 both sides are nonempty. , =

Now that we have some basic results on betweenness, we can define rays
and angles. y.

Definition
Given two distinct points A, B, the ray
AB is the set consisting of A, plus all
points on the line AB that are on the
same side of A as B. The point A is the
origin, or vertex, of the ray. An angle is
the union of two rays AB and AC -~
originating at the same point, its vertex,
and not lying on the same line. (Thus A
there is no “zero angle,” and there is no
“straight angle” (180°).) Note that the
vertex of a ray or angle is uniquely de- T
termined by the ray or angle (proof
similar to Exercises 7.2, 7.3).

The inside (or interior) of an angle
L BAC consists of all points D such that
D and C are on the same side of the line
AB, and D and B are on the same side of
the line AC. If ABC is a triangle, the in-
side (or interior) of the triangle ABC is
the set of points that are simultaneously
in the insides of the three angles
LBAC,/ ABC,/ ACB.

> 3
®

Proposition 7.3 (Crossbar theorem)
h&. F.WK»Q be an angle, and let D be a
Pomt in the interior of the angle. Then the

T4l AD must meet the segment BC.

Wb w&q This is similar to Pasch’s axiom (B4), except that we must consider a
& AD that passes through one vertex of the triangle ABC. We will prove it

mﬁw Hummoﬁ_mmﬁoEmbamméﬂ& applications of the plane separation theorem



Let us label the lines AB=1, AC=
m, AD =n. Let E be a point on m such
that E x A * C(B2). We will apply Pasch’s
axiom (B4) to the triangle BCE and the
line n. By construction n meets the side
CE at A. Also, n cannot contain B, be-
cause it meets the line [ at A. We will A
show that n does not meet the segment A‘
BE, so as to conclude by (B4) that it
must meet the segment BC.

So we consider the segment BE. This segment meets the line ! only at B, so
all points of the segment, except B, are on the same side of [. By construction, C
is on the opposite side of I from E, so by (7.1) all points of BE, except B, are on
the opposite side of [ from C. On the oﬁa hand, since D is in the interior of the

angle / BAC, all the points of the ray AD, except 4, are on the same side of I as
C. Thus the segment BE does not meet the ray AD.

A similar reasoning using the line m shows that all points of the segment BE,
except E, lie on the same side of m as B, while the points of the ray of n, opposite
the ray AD , lie on the other side of m. Hence the segment BE cannot meet the
opposite ray to AD. Together with the previous step, this shows that the seg-
ment BE does not meet the line n. We conclude by (B4) that n meets the seg-
ment BC in a point F. . _

It remains only to.show that F is on the ray AD of the line n. Indeed, B and
F are on the same side of m, and also B and D are on the same side of m, so (7.1)
D and F are on the same side of m, and so D and F are on the same side of A on

the line n. In other words, F lies on the ray AD.

Example 7.3.1
We will show that the real Cartesian plane (6.1.1), with the “usual” notion of
betweenness, provides a model for the axioms (B1)-(B4).

First, we must make precise what we mean by the usual notion of between-
ness. For three distinct real numbers a,b,c € R, let us define a b * ¢ if either
a<b<cor c<b<a Then it is easy to see that this defines a notion of
betweenness on the real line R that satisfies (B1), (B2), and (B3).

If A= (a,a), B=(b,b,), and C= (c,c;) are three points in R?, let us
define A *BxC to mean that A,B,C are three distinct points on a line, and
that either aj # by * ¢, Or ag * by * ¢, or both. In fact, if either the x or the y-
coordinates satisfy this betweenness condition, and if the line is neither hori-
zontal nor vertical, then the other coordinates will also satisfy it, because the
points lie on a line, and linear operations (addition, multiplication) of real num-
bers either preserve or reverse inequalities. Thus linear operations preserve be-
tweenness. So we can verify easily that this notion of betweenness in R? sat-
isfies (B1), (B2), and (B3).

For {B4), let [ be a line, and let 4, B, C be three noncollinear points not
The line-! is defined by some linear equation ax + by + ¢ = 0. Let o:R? M _MB !
the linear function defined by ¢(x, y) = ax + by + ¢. Since pisa msmma functi vm
¢ will preserve betweenness. For example, if I meets the segment AB, then m 6.F
lie between ¢(A) and ¢(B). In other words, one of g(A), @(B) will be mo%ﬁ? by
the other negative. ms@@o%lsfgv 0 and ¢(B) < 0. Consider 9(C). 1t eﬂoww mda
then [ will meet BC but not AC. If 9(C) < 0, then | will meet AC but not .wd %sp
proves (B4). L~

Exercises .
7.1 Using the axioms of incidence and betweenness and the line se

show that sets of four points A, B,C, D on a line behave as we e
respect to betweenness. Namely, show that

Pparation property,
xpect them to with

(a) AxBxCand BxC*D imply A*B*Dand A * C «D.
(b) AxB+Dand BxC«Dimply A+*B*Cand A « G« D.

7.2 Given a segment AB, show that there do not exist points C,D e AB such that
CxA D, Hence show that the endpoints A, B of the segment are uniquely deter-
mined by the segment.

7.3 Given a triangle ABC, show that the sides AB, AC, and BC and the vertices A. B.C

are uniquely determined by the triangle. Hint: Consider the different ways in which
a line can intersect the triangle.

7.4 Cmgm (I1)~(13) and (B1)-(B4) and their consequences, show that every line has
infinitely many distinct points.

7.5 Show that the line separation property (Proposition 7.2) is not a consequernce of
ﬁmu.v, (B2), (B3), by constructing a model of betweenness for the set of points on
a line, which satisfies (B1), (B2), (B3) but has only finitely many points. (Then by
Exercise 7.4, line separation must fail in this model.) For example, in the ring
{0,1,2,3,4} of integers (mod 5), definc a+ b+ cifh = la+o).

7.6 Huu.mém directly from the axioms (I1)-(I3) and (B1)~(B4) that for any two distinct
points \r B, there exists a point C with A x C % B. (Hint: Use (B2) and (B4) to con-
struct a line that will be forced to meet the segment AB but does not contain A or B.)

7.7 Be careful not to assume without proof statements that may appear obvious. For
example, prove the following:

Am.v Let A, B, C be three points on a line A c B
with C in between A and B. Then show o s o
that ACU CE = ABand ACNCB = {c}.

?v. Suppose we are given two distinct ¢
Points 4, B on a line 1. Show that AB U —

pol . £

BA =7and AB NBA = AB. , B %




(€, “ Case 2 AC and BD do not meet. In
, this case, show that one of the diago-

nals (AC in the picture) has the prop- A
7.8 Assume A*BxC on one line, and ? erty that the other two vertices B, D are :

A % D x E on another line. Show that the on the same side of the line AC, while -
segment BE must meet the segment CD M the other diagonal BD has the property
at a point M. that A and C are on the opposite sides
A of the line BD. Define the interior of the
. guadrilateral to be the union of the
D € . interiors of the triangles ABD and CDB

plus the interior of the segment BD.

7.9 Show that the interior of a triangle is nonempty.
; Show in this case_ that the interior is

B . a segment-connected set, but is not
7.10 Suppose that a line I contains a point D convex. N .
that is in the inside of a triangle ABC. . o = mwdmw.mbwmﬂod to n-sided fig-
Then show that the line  must meet (at D {0 205 Fizercise 22.11)
least) one of the sides of the triangle. 7.14 (Linear ordering) Given a finite set of distinct points on a line, it is possible to label
A c them Ay, A, ..., A, in such a way that A; = A; x Ay, if and oE%%mEﬁiA\.A»M.\
k<j<li _
7.11 A set U of points in the plane is a convex set if whenever A, B are distinct points in U, 7.15 Suppose that lines a,b,c¢ through the
then the segment AB is entirely contained in U. Show that the inside of a triangle is vertices A,B,C of a triangle meet at
a convex set. three points inside the triangle. Label
them
7.12 A subset W of the plane is segment-connected if given any two points A, B W, there
is a finite sequence of points A = Ay, Ay, ..., A, = B such that for eachi=1,2,..., X=a-c
n — 1, the segment A;A;;; is entirely contained within W. ; Y=a-b,
If ABC is a triangle, show that the exterior of the triangle, that is, the set of all points of Z=ph-c.

the plane lying neither on the triangle nor in its interior, is a segment-connected set.
p ying g At Show that one of the two following

7.13 Let A, B, C,D be four points, no three collinear, and assume that the segments AB, arrangements must occur:

BC, TD, DA have no intersections except at their endpoints. Then the union of these () AxX*«YandB+Y+Zand C+Z+ X
four segments is a simple closed quadrilateral. The segments AC and BD are the diag- (shown in diagram), or

onals of the quadrilateral. There are two cases to- consider.

() AxY+Xand B+« Z+Yand Cx X Z.

Case 1 AC and BD meet at a point M.
In this case, show that for each pair
of consecutive vertices (e.g., A,B), the
remaining two vertices (C,D) are on
the same side of the line AB. Define
the interior of the quadrilateral to be
‘the set of points X such that for each
side (e.g., AB), X is on the same side of
the line AB as the remaining vertices
(G, D). Show that the interior is a con-
vex set.

8 Axioms of Congruence for Line Segments

MMMHMMM mm%ma undefined notions of point, line, and betweenness, and to the
ENge mowuwogm (11)-(13), (B1)(B4), we now add an undefined Soﬂoﬁ OW. congru-
no:mEmsSm .momaoﬁmu md.m further Enoﬂm (C1)~(C3) regarding this notion. This
dofineg ce is what Euclid ommo.a m.@zmrax of segments. We postulate an uil-

notion of congruence, which is a relation between two line segments AB

e



and CD, written AB = CD. For simplicity we will drop the bars over AB in the
notation for a line segment, so long as no confusion can result. This undefined
notion is subject to the following three axioms

A—"

& )

C1. Given a line segment AB, and given
a ray v originating at a point C, there
exists a unique point D on the ray r
such that AB =~ CD.

C2. If AB =~ CD and AB >~ EF, then CD = EF. Every line segment is congruent to
itself.

C3. (Addition). Given three points A, B,
C on a line satisfying A «BxC, and
three further points D,E,F on a line A )
satisfying DxE«+F, if AB=~DE and
BC =~ EF, then AC =~ DF.

Let us observe how these axioms are similar to Euclid’s postulates and how
they are different. First of all, while Euclid phrases some of his postulates in
terms of constructions (“to draw a line through any two given points,” and “to
draw a circle with any given center and radius”), Hilbert's axioms are existen-
tial. (I1) says for any two distinct points there exists a unique line containing
them. And here, in axiom (C1), it is the existence of the point D (corresponding
to Euclid’s construction (1.3)) that is taken as an axiom. Hilbert does not make
use of ruler and compass constructions. In their place he puts the axiom (C1) of
the existence of line segments and later (C4) the existence of angles. If you like,
you can think of (C1) and (C4) as being tools, a “transporter of segments” and a
“transporter of angles,” and consider some of Hilbert's theorems as construc-
tions with these tools. )

The second congruence axiom (C2Z) corresponds to Euclid’s common notion
that “things equal to the same thing are equal to each other.” This is one part of
the modern notion of an equivalence relation, so to be comfortable in using
congruence, let us show that it is indeed an equivalence relation.

Proposition 8.1 :
Congruence is an equivalence relation on the set of line segments.

Proof To be an equivalence relation, congruence must satisfy three properties.

(1) Reflexivity: Every segment is congruent to itself. This is explicitly stated in
(C2). And by the way, this corresponds to Euclid’s fourth common notion that
“things which coincide with each other are equal to each other.”
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(2) Symmetry: If AB = CD, then CD = AB. This is a consequence of (C2):
siven AB = CD, and writing AB = AB by reflexivity, we conclude from (C2) that
oD = AB. :

(3) Transitivity: If AB = CD and CD = EF, then AB = EF. This follows by first
1sing symmetry to show CD & AB, and then applying (C2). Notice that Hilbert's
ormulation of (C2) was a clever way of including symmetry and transitivity in a
single statement. :

The third axiom (C3) is the counterpart of Euclid’s second common notion,
‘hat “equals added to equals are equal.” Let us amplify this by making a precise
lefinition of the sum of two segments, and then showing that sums of congruent
segments are congruent.

Definition
_et AB and CD be two given segments.
Shoose an ordering A,B of the end-
soints of AB. Let r be the ray on the line
' = AB consisting of B and all the points
>f 1 on the other side of B from A. Let E E D
se the unique point on the ray r (whose —
sxistence is given by (C1)) such that
CZD =~ BE.

We then define the segment AE to be the sum of the segments AB and CD,
depending on the order A, B, and we will write AE = AB + CD.

1P
I)G)
[43]
-

\4

Proposition 8.2 (Congruence of sums)
Suppose we are given segments AB = A'B' and CD = C'D'. Then AB+CD =

A'B'+C'D'. _

Proof Let E' be the point on the line A'B’ defining the sum A'E' = A'B' + c'D'.
Then A * Bx E by construction of the sum AB+ CD, because E is on the ray
from B opposite A. Similarly, A’ B’ +E’. We have AB = A'B’ by hypothesis.
Furthermore, we have CD = C'D’ by hypothesis, and CD = BE and C'D' =
B'E’ by construction of E and E'. From (8.1) we know that congruence is an
equivalence relation, so BE = B'E’. Now by (C3) it follows that AE = A'E' as

required.

Note: Since the segment AB is equal to the segment BA, it follows in particular
that the sum of two segments is independent of the order A, B chosen, up to
congruence. Thus addition is well-defined on congruence equivalence classes of
line segments. So we can speak of addition of line segments or congruent seg-
ments without any danger (cf. also Exercise 8.1, which shows that addition of
line segments is associative and commutative, up to congruernce). Later (Section

19) we will-also define multiplication, of segments and so cteate’a fiel

ment arithmetic. d of seg-

Euclid’s third common notion is that “equals subtracted from equals
equal.” Bearing in mind that subtraction does not always make sense B are
interpret this common notion as follows, 7 e

Proposition 8.3

Given three points A,B,C on a line such c
that A x B = C, and given points E,F on a LI

yay originating from a point D, suppose w\\
that AB.~ DE and AC = DF. Then E will D

be between D and F, and BC = EF. (We
regard BC as the difference of AC and
AB)

Proof Let F' be the unique point on the ray originating at E, opposite to D, such
that BC = EF’. Then from AB g DE and BC =~ EF' we conclude by AO& that
AC = DF'. But F and F" are on the same ray from D ( check!) and also AC =~ DF,
s0 by (C2) and the uniqueness part of (C1), we conclude that F = F. It follows
that D * E x F and BC 2 EF, as required. =

Note the role played by the uniqueness part of (C1) in the above proof. We
tan regard this uniqueness as corresponding to Euclid’s fifth common notion
“the Sro.F is greater than the part.” Indeed, this statement could be Eﬁmgamﬁmm
as meaning, if A+ Bx*C, then AB cannot be congruent to AC. And indeed, this
foliows from (C1), because B and C are on the same ray from A, and if AB ~ AC
then B and C would have to be equal by (C1). -

S0 we see that Euclid's common notions, at least in the case of congruence of

line mmmgobwmu can be deduced as consequences of the new axioms (C1)=(C3).
MMMVEGH notion used by Euclid without definition is the notion of inequality of
ine mm.mgoam. Let us see how we can define the notions of greater and lesser
also using our axioms.

UmmﬂmﬁmOﬂ .

Mfm 4B and CD be given line segments. A B

sw will ‘'say that AB is less than CD, \

5 M_.ﬁwus %ﬂw < CD, if there exists a point

; Etween C ~ [’I
CE and D such that AB =~ c = w

- In this case we say also that CD is
'eater than AB, written GD > AB.



In the next proposition, we will see that this notion of less than is compatible
with congruence, and gives an order relation on congruence equivalence classes
of line segments.

Proposition 8.4 z

(a) Given line segments AB = A'B' and CD = C'D’, then AB < CD if and only if
A'B' < C'D'.

(b) The relation < gives an order relation on line segments up to congruence, in
the following sense:

(i) If AB < CD, and CD < EF, then AB < EF.
(ii) Given two line segments AB, CD, one and only one of the three following condi-
tions holds: AB < CD, AB = CD, AB > CD.

Proof (a) Given AB= A'B' and CD =

C'D', suppose that AB<CD. Then , B

there is a point E such that AB= CE \

and CxExD. Let E be. the unique C c g
point on the ray C'D’ such that CE = TTTT———

C'E'. 1t follows from (8.3) that C'+E'x - A \ .
D'. Furthermore, by transitivity of con- /‘w /

gruence, A'B' = C'E/, so A'B' < C'D’ as \ D’
required. The “if and only if” statement €
follows by applying the same argument c

starting with A’B’ < C'D’.

(b) (i) Suppose we are given AB <
CD and CD < EF. Then by definition,
there is'a point X € CD such that AB =
CX, and there is a point Y€ EF such
that CD = EY. Let Ze EF be such that C X D
CX = EZ. Then by (8.3) we have Ex* Z*
Y. It follows that E * Z * F (Exercise 7.1) g Z Y F
and that AB =~ EZ. Hence AB < EF as ¢
required.

(ii) Given line segments AB and CD,
let E be the unique point on the ray D )
for which AB = CE. Then either D =E
or CxExD or CxDx%xE. We cannot
have D * C x E because D and E are on C
the same side of C. These conditions are
equivalent to AB = CD, or AB < CD, or
AB > CD, respectively, and one and
only one of them must hold.

gxample 8.4.1

1et us define congruence for line seg-
ments in the real Cartesian plane R?, so
{hat it becomes a model for the axioms
(11)-(13), (B1)~(B4), and (C1)-(C3) that
we have introduced so far. We have
already seen how to define lines and
betweenness (7.3.1). Given two points
A = (a1,a2) and B = (by,b;), we define
the distance d(A, B) by

B WNr: _opm

A = (i)

d(4B) = /(1 — 1) + (a2 — b)*.

This is sometimes called the Euclidean distance or the Euclidean metric on IR?
Note that d(A, B) > 0, and d(A,B) = 0 only if A = B. ;

Now we can give an interpretation of the undefined notion of congruence in
this model by defining AB = CD if d(A, B) = d(C, D). Let us verify that the axioms
(€C1), (C2), (C3) are satisfied.

For (C1), we suppose that we are
given a segment AB, and let d = d(A, B).
We also suppose that we are given a
point C = (¢1,¢;) and a ray emanat- D
mg from C. For simplicity we will
assume that the ray has slope m >0
and that it is going in the direction of mh
increasing x-coordinate (we leave the
other cases to the reader). Then any
point D on this ray has coordinates D =
(1R, co + mh) for some h>0. The
corresponding distance is

dC,D) =hV1+m?2

ﬁ ,n?:me\

Jes 0 mda a point D with AB = CD is then equivalent to solving the equation
{in & variable 1 > 0) :

hv1l+m?=d,
Where
& “X€ m and d > 0 are given. Clearly, there is a unique solution h e R, h >0,

LEVen d, m. This proves (C1).

_H‘TG second : : - :
: axiom (C2 iti ing a
distance - (C2) is trivial from the definition of congruence using



To prove AOw.Y it will be mc.mmﬂmﬁ to _ g.4 Let v be a ray originating at a point A,
prove that the distance function is addi- C and let s be a ray originating at a point
tive. for points in a line: If AxBx*C, B ! B. Show that there is'a'1-to-1 mapping A v
then : ¢ : 7 — s of the set v onto the set s that \
d(A, B) +d(B, C) = d(A, C). A ; preserves congruence and between-
ness. In other words, if for any X e v we
Suppose the line is y=mx+b, and let X' =p(X)es, then for any X7, ® s
A = (m,a;) is the point with smallest Zer, XY=X'Y, and X+«YxZ<e
x-coordinate. XY +Z.
Then there are h,k > 0 such that 8.5 Given two distinct points O, A, we define the circle with center O and radius OA to b
o be

the set T of all points B such that OA =~ OB.

B= (a1 +h,a; +mh), - ‘
a) Show that any line through O 1 i i 3
O (o Bt Kot 4 A (a) gh O meets the circle in exactly two points,
(b) Show that a circle contains infinitely many points.
In this case (Warning: Tt is not obvious from this d ;
: It is not obvious from this definition whether th i i
_ . : . € center O is N
d(A,B) = hV1 +m?, RMEEHM&W% the set of points I that form the circle. We will prove that WM%@MNMMM.
d(B,C) =kv1+m?, )
8.6 Consider the rational Cartesian plane ©* whose poi i
Al points are ordered i
dA,C) = (h+ %) 3“ Wﬁswmamu where lines are defined by linear equations with rational WMMWMMQWM MNM
o . . etweenness and congruence are defined as in the standard mod
so the additivity of the distance function follows. . . . and 8.4.1). Verify that (I1)~(I3) and (B1)-(B4) are satisfied in Mww B Amm MMmEEmm o
We will sometimes call this model, the real Cartesian plane with congruence that (C2) and (C3) hold in this model, but (C1) fails T i
of segments defined by the Euclidean distance function, the standard model of ] 87 Consider the real C : N“ " .
of epmionte .. ; - re mimm&.ﬁ plane IR . with lines and betweenness as before (Exam-
‘ ple 7.3. ), sﬁ. mmmﬁm a different notion of congruence of line segments using the
distance function given by the sum of the absolute values:
. d(A,B) =la; —by|+|az — b
Exercises s 4= s g el
T I.Aam az) mﬂm %H (b1,b;). Some people call this “taxicab geometry” be-
] it 1s similar to the distance by taxi fr i i i
The following exercises (unless otherwise specified) take place in a geometry with streets run east-west or Soﬁw[mozumw. mwo%amgmw Mwwo%ﬁowwﬂ%wwmmw nmwﬂww\,xwmm ww

that this is anothier model of the axioms introduced so far. What does the circle with
center (0,0) and radjus 1 look like in this model?

Mwmmw.s consider the real Cartesian plane IR?, and define a third notion of congruence
Tlne segments using the sup of absolute values for the distance function:

axioms (I1)~(I3), (B1)-(B4), (C1)~(C3).

8.1 (a) Show that addition of line segments is associative: Given segments AB, CD, EF,
and taking A, B in order, then (AB + CD) + EF = AB + (CD + EF). (This means that 8.8
we obtain the same segment as the sum, not just congruent segments.)

(b) Show that addition of line segments is commutative up to congruence: Given ¥ ] d(A, B) = sup{la; — by|,|az — by}
segments AB, CD, then AB+CD = CD + .\tw. MMMM,\. that (C1), AONVW (C3) are also satisfied in this model. What does the circle with
8.2 Show that “halves of equals are equal” in the following sense: if AB = CD, and if E is ! er (0,0) and radius 1 look like in this case?
i)

a midpoint of AB in the sense that A E«B and AE = EB, and if F is a midpoint of Following our general principles, we say that two models M, M’ of our geometry are
CD, then AE = CF. (Note that we have not yet said anything about the existence of a . isomorphic if there exists a H-ﬁo,HQEm@EBm Syidaet M MEV ﬂo H,o &Mﬁm e
midpoint: That will come later (Section 10).) Conclude that a midpoint of AB, if it 4 the set of points of M, written p(4) \% .Emﬁ Mo msmm mmﬂ SMo ﬂdmm oL o
’ b . ’ N - 3 5
:Mgmmssmwmmv ie, A*BxCin M A'+B' «C' in M, and preserves CONgruence of
© segments, i.e., AB~ CDin M < A’B' = C'D' in M.

Shy .
OW that the models of Exercise 8.7 and Exercise 8.8 above are isomorphic to each

exists, is unique.
8.3 Show that addition preserves inequalities: If AB < CD and if EF is any other seg-
ment, then AB + EF < CD + EF. R



other, but they are not isomorphic to the standard model (Example 8.4.1). Note: To
show that the two models of Exercise 8.7 and Exercise 8.8 are isomorphic, you do
not need to make the distance functions correspond. It is only the notion of congru-
ence of line segments that must be preserved. To show that two models are not iso-
morphic, one method is to find some statement that is true in one model but not
true in the other model.

10 Nothing in our axioms relates the size of a segment on one line to the size of a con-
gruent segment on another line. So we cant make a weird model as follows. Take the
real Cartesian plane IR? with the usual notions of lines and betweenness. Using the
Euclidean distance function d(A, B), define a new distance function

Z'(A,B) = d(A,B)  if the segment AB is either horizontal or vertical,
"/ 2d(A,B)  otherwise.
Define congruence of segments AB = CD if d'(A, B) = d'(C, D).
Show that (C1), (C2), (C3) are all satisfied in this model. What does a circle with
center (0, 0) and radius 1 look like?

A:meSm:%mﬂ.s@%&ﬂ.@mmEmmﬁmﬁmgosﬁﬁrmﬁﬁ.\rm,ﬁ .mammﬁmm&mndoﬁ @owﬁmvgm&
AC < AB+BC. . )

(a) The triangle inequality always holds for collinear points.

(b) The triangle inequality holds for any three points in the standard model (Exam-
ple 8.4.1) and also in taxicab geometry (Exercise 8.7).

(c) The triangle inequality does not hold in the model of Exercise 8.10. Thus the tri-
angle inequality is not a consequence of the axioms of incidence, betweenness, and
congruence of line segments (C1)-(C3). (However, we will see in Section 10 that the
triangle inequality, in the form of Euclid (1.20), is a consequence of the full set of
axioms of a Hilbert plane.)

3 Axioms of congruence for Angles

ecall that we have defined an angle to be the union of two rays originating
it the same point, and not lying on the same line. We postulate an undefined
1otion of congruence for angles, written =, that is subject to the following three

1xioms:

. B /€
C4. Given an angle /. BAC and given a ;
cay DF , there exists a unique ray DE, /
on a given side of the line DF, such that A (. C “o\ /\ F
A - )

/ BAC = [/ EDF.

C5. For any three angles «;f8,y; if a = f and a =, then f§ = y. Every angle is
congruent to itself.

- _._'.: .._‘HI"._\
et

I
'
..MI. S

C6. (SAS) Given triangles ABC and DEF,
suppose that AB = DFE and "AC= DF, A
and /L BAC = / EDF. Then the two tri- = €
angles are congruent, namely, BC =~ EF,
/ ABC = / DEF and / ACB = / DFE.
D F
Note that Hilbert takes the existence of an an
, . : gle congruent to i
?b as an axiom, while Euclid proves this by a ruler and ooE@mMmmmde% e
tion (1.23). Since Hilbert does not make use of the compass, we may ww@% M
this axiom as a tool, the “transporter of angles,” that a u i :
> 2 cts a
g s a substitute for the
As with (C2), we can use (C5) to show t i i
ol (C5) hat congruence is an equivalence

Proposition 9.1 .
Congruence-of angles is an equivalence relation.

Proof The proof is identical to the proof of (8.1), using (C5) in place of (C2)

As in the case of congruence of line segments, we would like to make se
o.m Euclid’s common notions in the context of congruence of angles. This aosmm
sition (9.1) is the analogue of the first common notion, that :Q&Bmm. m@d&ﬂo MMQ.
same thing are equal to each other.” The second common notion, that “equals
mm&m& to equals are equal,” becomes problematic in the case of mdu%mw because
in general we cannot define the sum of two angles. u

D
I_I..Hm .\Lw\wo is an angle, and if a ray
AD lies in the interior of the angle Y
LBAC, then we will say that the angle

L BAC is the sum of the angles /. DAC
and / BAD.,

A SRR

EmMMMMMMv if we mﬁi with the two mﬁmb angles, there may not be an angle
e o 1 rmsg in wgm sense. For one thing, they may add up to astraight line,
i mammdmﬁmﬁr mb%omo as mcﬂi says, but this is not an angle. Or their sum may
will not be 1 mMHHw.o , in which case we get an angle, but the two original angles
results w&ﬁ% © Eﬁmﬁ.Sa of the new angle. So we must be careful how we state
Note ﬁrwﬁm to do with sums of mﬁmﬁ@m.

dlalogoy e Q.o not have an axiom about congruence of sums of angles

§ to the axiom (C3) about addition of line segments. That is because we




can prove the corresponding result for angles. But in order to do so, we will
need {(C86).

Hilbert's use of (C6) = (SAS) as an axiom is a recognition of the insufficiency
of Euclid’s proof of that result (1.4) using the method of superposition. To justify
the method of superposition by introducing axioms allowing motion of figures in
the plane would be foreign to Euclid’s approach to geometry, so it seems pru-
dent to take (C6) as an axiom. However, we will show later (17.5) that the (SAS)
axiom is essentially equivalent to the existence of a sufficiently large group of
rigid motions of the plane. The axiom (C6) is necessary, since it is independent
of the other axioms (Exercise 9.3). This axiom is essentially what tells us that our
plane is homogeneous: Geometry is the same at different places in the plane.

Now let us show how to deal with sums of angles and inequalities among
angles based on these axioms.

Definition

If /. BAC is an angle, and if D is a point B
on the line AC on the other side of A

from C, then the angles /BAC and 5 A

[ BAD are supplementary. -

o

Proposition 9.2
If L BAC and [ BAD are supplementary angles, and if /. B'A'C' and [ B'A'D’ are
supplementary angles, and if /. BAC = L B'A'C', then also L. BAD = / B'A'D'.

Proof Replacing B/,C’,D' by other
points on the same rays, we may as-
sume that AB= A'B’, ACx= A'C’, and
AD =~ A'D'. Draw the lines BC, BD,
B'C!, and B'D’.

First we consider the triangles ABC
and A'B’C’. By hypothesis we have
AB =~ A'B' and AC = A’C’ and / BAC =
/. B'A'C'. So by (C6) we conclude that
the triangles are congruent. In particu-
lar, BC = B'C’ and /. BCA = /L B'C'A".

Next we consider the triangles BCD
and B'C'D’. Since AC = A'C' and AD =
A'D', and C+ A xD and C'+ A’ x D', we
conclude from (C3) that CD = C'D'".
Using BC = B'C' and [/ BCA = [ B'C'A’
proved above, we can apply (C6) again
to see that the triangles BCD and B'C'D’
are congruent. In particular, BD = B'D'
and /. BDA =~/ B'D'A’.

Now we consider the triangles BDA and B'D’A’. From the previous ste
have BD = B’D’ and / BDA =~ /. B'D'A’. But by hypothesis we have DA ~ W“S\m
So a third application of (C6) shows that the triangles BDA and B/D'A’ mMm iy
gruent. In particular, / BAD = / B'A’D’, which was to be proved. e
Note: We may think of this result as a replacement for (1.13), which says th
the angles made by a ray standing on a line are either right angles or mﬁm% e mw
to two right angles. We cannot use Euclid’s statement directly, because 5@% ;
terminology, the sum of two right angles is not an angle. However, in appli g
tions, Euclid's (1.13) can be replaced by (9.2). So for example, we mm%m L%M mn MH
lowing corollary. - ’ O

Corollary 9.3
Vertical angles are congruent.

Proof Recall that vertical angles are de-
fined by the opposite rays on the same
two lines. The vertical angles o and o
are each supplementary to f, and f is
congruent to itself, so by the proposi-
tion, « and &' are congruent.

Proposition 9.4 (Addition of angles)

Suppose / BAC is an angle, and the ray AD is in the interior of the angle /. BAC.
Suppose | D'A'C' = / DAC, and /.B'A'D' = / BAD, and the rays A'B' and A'C'
dare on opposite sides of the line A'D'. Then the rays A'B' and A'C' form an angle,
and LB'A'C' =/ BAC, and the ray A'D' is in the interior of the angle /. B'A'C'. For
short, we say “sums of congruent angles are congruent.”

Proof Draw the line' BC. Then the ray
AD must meet the segment BC, by the
nnﬂ.,m.mwmﬁ theorem (7.3). Replacing the
otiginal D by this intersection point, we
may assume that B,D,C lie on a line
ms.m.m*b* C. On the other hand, re-
H..;mﬂdm B',C', D' by other points on the
vmﬁ..m Tays, we may assume that AB =~
ABL and AC > A'C’, and AD =~ A'D'.
We also have ,BAD =~/ BA'D' and
LDAC =~/ p/A'C by hypothesis.
. .mw% (C6) we conclude that the tri-
8€5 ABAD and AB/A'D' are con-

srient, 1n arti
il rticul ~ B'D’
LEDA m\b@\b\ ar, BD =~ B'D’ and

B




Again by (C6) we conclude that the triangles ADAC and AD'A’C’ are congru- i
ent. In particular, DC = D'C’ and L ADC = L A'D'C’: i

Let E be a point on the line B'D’ with B’ + D’ » E'. Then L A'D'E' is supple-
mentary to L A’D'B’, which is congruent to / ADB. So by (9.2) and transitivity of
congruence, we find that / A'D'E’' = / A'D'C’. Since these angles are on the
same side of the line A’D’, we conclude from the uniqueness part of (C4) that
they are the same angle. In other words, the three points B, D', and C' lie on a
line.

Then from (C3) we conclude that BC = B'C'. Since L ABD = [/ A'B'D' by the
first congruence of triangles used in the earlier part of the proof, we can apply
(C6) once more to the triangles ABC and A’B'C’. The congruence of these tri-
angles implies /. BAC = [ B'A'C’ as required. Since B',D’, and C' ars collinear
and D'A’C’ is an angle, it follows that A/, B',C' are not collinear, so B'A'C’ is an
angle. Since B’ and C’ are on opposite sides of the line A'D', it follows that
B'«D'xC', and so the ray A'D' is in the interior of the angle £ B'A'C', as
required. .

Next, we will define a notion of inequality for angles analogous to the
inequality for line segments in Section 8.

Definition .

Suppose we are given angles / BAC and

[/ EDF. We say that / BAC is less than 0

[ EDF, Sﬁﬁmﬁlﬁ BAC < L EDF, if there

exists a ray DG in the interior of the

angle / EDF such that / BAC = L GDF. A c
In this case we will also say that / EDF

is greater than [/ BAC.

Proposition 9.5 .
(a) faz=o and p=f', thena < =o' <f'.
(b) Inequality gives an order relation on angles, up to congruence. In other words:
(i) fa< fandff <y, then o <7.
(i) For any two angles o and 8, one and only one of the following holds: o < B
af o> B

Proof The proofs of these statements are essentially the same as the correspond-
ing statements for line segments (8.4), so we will leave them to the reader.’

Definition

A right angle is an angle o that is con-
gruent to one of its supplementary m ol '
angles f. '

Note: In this definition, it does not matter which supplementary angle to g w

consider, because the two supplementary angles to « are vertical angles, hen. 5
congruent by (9.3). Two lines are orthogonal if they meet at a point mmé oﬂom
hence all four, of the angles they make is a right angle. ; it

Proposition 9.6
Any two right angles are congruent to each other.

Proof Suppose that & =/ CAB and o’ =
/ C'A'B’ are right angles. Then they will C
be congruent to their supplementary
angles B,f’, by definition. Suppose a
and o’ are not congruent. Then by (9.5)

either @ <o’ or o <a. Suppose, for

example, « < ¢’. Then by definition of ¢ i &

inequality there is a ray A'E' in the in- D A g
terior of angle o such that o PMS.M\.V.

It follows (check!) that the ray A'C’
is in the interior of / E'A'D’, so that
B' < LE'A'D'. But / E'A'D' is supple-
mentary to / E'A'B’, which is congruent
to %, so by (9.2), LE'A'D' = . There- "’
fore, B’ <p. But « = f and o' = f', so . ﬁw ;
we conclude that o <o, which is a D' A’ %’
tontradiction.

Note: Thus the congruence of all right angles can be proved and does not need
to be taken as an axiom as Euclid did (Postulate 4). The idea of this proof already
appears in Proclus. : ;

Example 9.6.1

SMO %E m.wSS later that the real Cartesian plane R? provides a model of all the
mwgﬂm listed so far. You are probably willing to believe this, but the precise
”‘M f ition of what we mean by congruence of angles in this model, and the proof
Ewﬁmﬁogm (C4)—(C6) hold, requires some work. We will postpone this work
i we E.mwm a systematic study of Cartesian planes over arbitrary fields, and
.m.&m e SE show more generally that the Cartesian plane over any ordered
Gw Jmmﬁm@amm a certain algebraic condition gives a model of Hilbert's axioms
The other most important model of Hilbert's axioms is the non-Euclidean

Poi 2 .
fcaré model, which we will discuss in Section 39.



Exercises

9.1 (Difference of angles). Suppose we
are given congruent angles / BAC
L B'A’C’. Suppose also that we are given
a ray AD in the interjor of L BAC. Then
there exists a ray A’D’ in the interior of
[ B'A'C" such that /. DAC=~/D'A'C
and / BAD =~/ B'A’D’. This statement
corresponds to Euclid’s Common Notion
3: “Equals subtracted from equals are
equal,” where “equal” in this case
means congruence of angles.

b
D
A c A
. B
D
9.2 Suppose the ray AD is in the interior of €

the angle / BAC, and the ray AE is in
the legdoa of the angle / DAC. Show
that AE is also in the interior of /. BAC. A &

9.3 Consider the real Cartesian plané where congruence of line segments is given by the
absolute value distance function (Exercise 8.7). Using the usual congruence of angles
that you know from analytic geometry (Section 16), show that (C4) and (C5) hold in
this model, but that (C6) fails. (Give a counterexample.)

C
>
A _ B

We have now introduced the minimum basic notions and axioms on which to
found our study of geometry.

9.4 Provide the missing betweenness argu-
ments to complete Euclid’s proof of (1.7)
in the case he considers. Namely, as-
suming that the ray AD is in the inte-
rior of the angle / CAB, and assuming
that D is outside the triangle ABC, prove
that CB is in the interior of the angle
L ACD and DA is in the interior of the
angle / CDB. \

10 Hilbert Planes

e et
.

pefinition

A Hilbert plane is a given set (of points) together with certain subsets called lines
and undefined notions of betweenness, congruence for line segments, and st
gruence for angles (as explained in the preceding sections) that satisfy the axioms
GSQQmY (B1)-(B4), and (C1)=(C6). (We do not include the parallel axiom (®))

We could go on immediately and introduce the parallel axiom and axioms of
intersection of lines and circles, so as to recover all of Euclid’s Elements, but it
seems worthwhile to pause at this point and see how much of the geometry we
can develop with this minimal set of axioms. The main reason for doing this is
that the axioms of a Hilbert plane form the basis for non-Euclidean as well as
puclidean geometry. In fact, some people call the Hilbert plane neutral geometry,
because it neither affirms nor denies the parallel axiom.

In this section we will see how much of Fuclid’s Book T we can recover in a
Hilbert plane. With two notable exceptions, we can recover m<maﬁw§m that does
not make use of the parallel postulate.

Let us work in a given Hilbert plane. Euclid’s definitions, postulates, and
common notions have been replaced by the undefined noticns, definitions, and
axioms that we have discussed so far (excluding Playfair's axiom). We will now
discuss the propositions of Euclid, Book 1.

The first proposition (1.1) is our first exception! Without some additional
axiom, it is not clear that the two circles in Euclid’s construction will actually
meet. In fact, the existence of an equilateral triangle on a given segment does
not follow from the axioms of a Hilbert plane (Exercise 39.31). We will partially
fill this gap by showing (10.2) that there do exist isosceles triangles on a given
sggment.

Euclid's Propositions (1.2) and (1.3) about transporting line segments are
effectively replaced by axiom (C1). Proposition (I.4), (SAS), has been replaced by
axiom (C6).

Proposition (1.5), and its proof are ok as they stand. In other words, every
step of Euclid’s proof can be justified in a straightforward manner within the
framework of a Hilbert plane. To illustrate this process of reinterpreting one of

Wznm%m proofs within our new axiom system, let us look at Euclid’s proof step
Y step.

Proof of (1.5) - Let ABC be the given isosceles triangle, with AB = AG (congruent
F.ﬁ seégments). We must prove that the base angles /. ABC and /. ACB are con-
m..EnE. “In BD take any point F.” This is possible by axiom (B2). “On AE cut off
AG equal to AF.” This is possible by (C1). Now AC = AB and AF = AG, and the
wﬁcﬂommg. angle / BAC is the same, so the triangles AAFC and AAGB are congru-
1t by g direct application of (C6). So FC = GB and [ AFC=/AGB and
£ACF = / ARG,

5 cdvE.:m :a@cmﬂ.m subtracted from equals are equal,” referring in.this case t0
“HStUence of line segments, we conclude from (8.3) that BF = CG. Then by



another application of (C6), the triangles AFBC and AGCB are congruent. It fol-
lows that / CBG =~ / BCF. Now by subtraction of congruent angles (Exercise 9.1),
the base angles /. ABC and / ACB are congruent, as required. (We omit the proof
of the second assertion, which follows similarly.)

A

€
D

At certain steps in this proof we need to know something about between-
ness, which can also be formally proved from our axioms. For example, in order
to subtract the line segment AB from AF, we need to know that B is between A
and F. This follows from oﬁlovwowom of F. At the last step, subtracting angles, we
need to know that the ray BC is in the interior of the angle / ABG. This follows
from the fact that C is between A and G.

So in the following, when we say that Euclid’s proof is ok as is, we mean that
each step can be justified in a natural way, without having to invent additional
steps of proof, from Hilbert's axioms and the preliminary results we established
in the previous sections.

Looking at (1.6), the converse of (1.5), everything is ok except for one doubt-
ful step at the end. Euclid says, “the triangle DBC: is equal to the triangle ACB,
the less to the greater; which is absurd.” Tt is not clear what this means, since we
have not defined a notion of inequality for triangles. However, a very slight
change will give a satisfactory proof. Namely, from the congruence of the tri-
angles ADBC = AACB, it follows that / DCB = L ABC. But also L ABC = L ACB
by hypothesis. So /. DCB = /. ACB, “the less to the greater,” as Euclid would say.
For us, this is a contradiction of the uniqueness part of axiom (C4), since there
can be only one angle on the mmdﬁwmmm of ﬁ ray CB congruent to the angle
[ ACB. We conclude that the rays CA and CD are equal, so A = D, and the tri-
angle is isosceles, as required.

3

ke

I *

celes; and so by (1.5) its base angles A /

Proposition (1.7), as we have mentioned before, needs some additional justi-
Aeation regarding the relative positions of the lines, which can be supplied from
our axioms of betweenness (Exercise 9.4).

For (1.8), (SSS), we will need a new proof, since Euclid’s method of super-
position cannot be justified from our axioms. The following proof is due to
Hilbert.

Proposition 10.1 (SSS)
1f two triangles ABC and A'B'C’ have their respective sides equal, namely AB =~ A'B
AC = A'C', and BC = B'C/, then the two triangles are congruent. G

Proof Using(C4) and (C1), construct an

angle /. C'A'B" on the other side of the

ray A'C' from B’ that is congruent ®

t0 / BAC, and make A'B” congruent to
AB. Then AB = A’'B” by construction,
AC = A'C' by hypothesis, and /. BAC = A X
/L B"A'C' by construction, so by (C6), i
the triangle AABC is congruent to the
triangle AA’B"C’. 1t follows that BC =
B"C.

Draw the line B'B". Now A'B'x B’
AB= A'B", so by transitivity, A'B' =~
A'B". Thus the triangle A’B'B" is isos- ;

o

LA'B'B" and / A'B"B’ are congruent. .\
Similarly, B'C' = B"C', so the triangle {
G'B'B" is isosceles, and its base angles
LB'B'C' and / B'B"C’ are congruent.
By addition of congruent angles (9.4) it i
tollows that / A'B'C' ~ P\w\.mtﬁi. ! @

This latter triangle was shown congruent to AABC, so L A'B"C' = [ ABC.
Now by transitivity of congruence, / ABC = / A'B'C’, so we can apply (C6)
again to conclude that the two triangles are congruent.

Note: This proof and the accompanying figure are for the case where A’ and o
are on opposite sides of the line B'B”. The case where they are on the same side
18 analogous, and the case where one of A’ or C' lies on the line B/B” is easier,
and left to the reader.

Starting with the next proposition (1.9) we have a series of constructions with
MEE. and compass. We cannot carry out these constructions in a Hilbert plane,
SGause we have not yet added axioms to ensure that lines and circles will meet



when they ought to {cf. Section 11). However, we can reinterpret these proposi-
tions as existence theorems, and these we can prove from Hilbert's axioms.
Since we do not have the equilateral triangles that Euclid constructed in (1.1), we
will prove the existence of isosceles triangles, and we will use them as a substi-
tute for equilateral triangles in the following existence proofs.

Proposition 10.2 (Existence of isosceles triangles)
Given a line segment AB, there exists an isosceles triangle with base AB.

Proof Let AB be the given line seg-

ment. Let C be any point not on the line

AB (axiom (I3)). Consider the triangle c
AABC. If the angles at A and B are
equal, then AABC is isosceles (1.6). If
not, then one angle is less than the
other. Suppose [ CAB < [ CBA. Then
there is a ray BE in the interior of the
angle / CBA such that / CAB =~ EBA.

By the crossbar theorem (7.3) this A . B
ray must meet the opposite side AC in a
point D. Now the base angles of the tri-
angle DAB are equal, so by (1.6) it is
isosceles.

Note: It would not suffice to construct

equal angles at the two ends of the inter-

val, because without the parallel axiom,

even if the angles are small, there isno A B
guarantee that the two rays would meet. ! It

" Now let us return to Euclid. We interpret (1.9) as asserting the existence of an
angle bisector. We use the same method as Euclid, except that we use (10.2) to
give the existence of an isosceles triangle ADEF where Euclid used an equilat-
eral triangle. We may assume that this isosceles triangle is constructed on'the
opposite side of DE from A. Then Euclid’'s proof, using (SSS), mr@mm that
/[ DAF = / EAF. 1t is not obvious from the construction that the ray AF is in
the interior of the angle / DAE, but it does follow from the conclusion: For if
AF ‘were not in the interior of the angle, then AD and AE would be on the
same side of AF, and in that case the congrugnce of the angles / DAF =~ / EAF
would contradict the uniqueness in axiom (C4).

For (1.10) to bisect a given line segment, we again use (10.2) to construct an
isosceles triangle instead of an equilateral triangle. The rest of Euclid’s proof
then works to show that a midpoint of the segment exists. !

For (1.11) we can also use (10.2) to construct a line perpendicular to a line at

R

the ray

a point. By the way, this also proves the existerice of right angles, which is not
ghvious a priori.

For (1.12), to drop a perpendicular from a point C to a line not containing ¢
Enclid’s method using the compass does not work in a Hilbert plane. We Smmm& u
new existence proof (see Exercise 10:4). . =

Proposition (1.13) has been replaced by the result on congruence of supple-
mentary angles (9.2), and (1.14) is an easy consequence .(Exercise 10.7) @%ﬁm
congruence of vertical angles (1.15) has already been mentioned above .Am 3)
The theorem on exterior angles (1.16) is sufficiently important that we wil] .Hm“
produce Euclid’s proof here, with the extra justifications necessary to make it
work.

Proposition 10.3 (Exterior angle theorem (1.16))
In any triangle, the exterior angle is greater than either of the opposite interior angles.

Proof Let ABC be the given triangle.
We will show that the exterior angle
L. ACD is greater than the opposite inte-
rior angle at A. Let E be the midpoint of
AC (1.10), and extend BE to F so that
BE =~ EF (axiom (C1)). Draw the line
CF. Now the vertical angles at E are
equal (1.15), so by SAS (C6), the tri-
angles AABE and ACFE are congruent.
Hence L A =~ / ECF. .

?

To finish the @H@ that is, to show that /. ECF is less than /2 ACD, we need to

know that the ray CF is in the interior of the angle / ACD. This we can prove
based on our axioms of betweenness. Since D is on the side BC of the triangle

extended, B and D are on opposite sides of the line AC. Also, by construction of

£ we have B and F on opposite sides of AC. So from the plane separation prop-

€Iy (7.1) it follows that D and F are on the same side of the line AC.

01 waﬁoodmﬁmw sides of the line BC. Since B E  F, it follows that E and F are

e o Mn%..m side om. wO Since > * E* C, it follows that A and E are on the same

mﬁm m W By transitivity .Q.C it follows that A and F are on the same side of the

= l:hvb - 80 by definition, F is in the interior of the angle / ACD, and hence

T %aﬂ@u 1s also. Therefore, by definition of inequality for angles, £ BAC is
L ACD, as required.

Py A
e TTOPOSitions A:dxn 1.21) are all ok as is, except that we should reinterpret

Sfatement of

HH.N . H 1 i . H ess
than tyyq right 2 (1.17). Instead of saying “any two angles of a triangle are

ngles,” which does not make sense in our system, since "two



right angles” is not an angle, we simply say; if o and f are any two angles of a
triangle, then « is less than the supplementary angle of B.

Proposition (1.22) is our other exception. Without knowing that two circles
intersect when they ought to, we cannot prove the existence of the triangle re-
quired in this proposition. In fact, we will see later (Exercise 16.11) that there
are Hilbert planes in which a triangle with certain given sides satisfying the
hypotheses of this proposition does not exist!

The next proposition (1.23), which Euclid proved using (1.22), is replaced by
Hilbert’s axiom (C4), the “transporter of angles.”

The remaining results that Euclid proved without using the parallel postulate
are ok as is in the Hilbert plane: (1.24), (1.25), (L26) = (ASA) and (AAS), (1.27)
“glternate interior angles equal implies parallel,” and even the existence of par-
allel lines (1.31).

Summing up, we have the following theorem.

Theorem 10.4
All of Euclid’s propositions (1.1) through (1.28), except (1.1) and (1.22), can be proved
in an arbitrary Hilbert plane, as explained above.

Counstructions with Hilbert’s Tools

Fuclid used ruler and compass constructions to prove the existence of various
objects in his geometry, such as the midpoint of a given line segment. We used
Hilpert's axioms to prove corresponding existence results in a Hilbert plane.
However, we can reinterpret these existence results as constructions if we
imagine tools corresponding to certain of Hilbert's axioms. Thus (11), the exis-
tence of a line through two points, corresponds to the ruler. For axiom (C1),
imagine a tool, such as a compass with two sharp points (also called a pair of di-
viders), that acts as a transporter of segments. For axiom (C4), imagine a new
tool, the transporter of angles, that can reproduce a given angle at a new point.
Tt could be made of two rulers joined with a stiff but movable hinge.

We call these three tools, the ruler, the dividers, and the transporter of
angles, Hilbert's tools. We also allow ourselves to pick points (using (I3) and (B2))
as required. ’

Now we can regard (10.2) as a construction of an isosceles triangle using
Hilbert's tools. Counting steps, with one step for each use of a tool, we have the
construction as follows:

Given a line segment AB. Pick C not on the line AB.

1. Draw line AC.
2. Draw line BC. Suppose /. CAB is less than / CBA.

3. Transport /. CAB to L ABE, get point D.
Then ABD is the required isosceles triangle.

Exercises

10,1 Construct with Hilbert’s tools the angle bisector of a given angle (par = 4)
10.2 Construct with Hilbert’s tools the Eaﬁomdﬁ. of a given segment (par = 4)

E.uOosm.ﬁst ﬁ%ﬂmw@iumﬂo&mmﬁbw@m@mﬁ&oﬁmaﬂo. . .
e o — 5). ,m given line I at a given point

10,4 Comstruct with Hilbert's tools a line perpendicular to a given line I from

not on I (par = 4). a point A

10,5 Construct with Hilbert's tools a line parallel to a given line I, and

given point A not on I (par = 2). bassing through a

10.6 Write out a careful proof of Euclid (1.18), justifying every step in the context of
0

a Hilbert plane, and paying especial attenti k
2 on t
inequalities. 0 questions of betweenness and

10.7 Rewrite the statement (1.14) so that it makes se i i
. nse
give a careful proof. i 2 Hibert plane gl ae

10.8 Write a careful proof of (1.20) in a Hilbert plane.

A A’
109 Show that the right-angle-side-side
congruence theorem (RASS) holds in a
Hilbert plane: If ABC and A’B'C’ are
triangles with right angles at B and B/,
and if AB > A'B’ and AC = A'C’, then .
the triangles are congruent.
B c B’ ¢
A B

’

100 In a Hilbert plane, suppose that we
are given a guadrilateral ABCD with
L.mw = CD and AC = BD. Prove that CE
1s parallel to AB (without using the
parallel axiom (P)). Hint: Join the

midpoints of AR and CD; th
i ; then use

D

>. L >v

10, i ;
11 W_ﬂma a finite set of points As,..., Ay,
4 Hilbert plane, prove that there

s ]
mwwmﬁ a line 1 for which all the points
7 01 the same side of .




11 Intersections of Lines and Circles

In this section we will discuss the intersections of lines and circles in the Hilbert
plane, and we will introduce the further axiom (E), which will guarantee that
lines and circles will intersect when they “ought” to. With this axiom we can
Jjustify Euclid’s ruler and compass constructions in Book I and Book III. We work
in a Hilbert plane (Section 10) without assuming the parallel axiom (P). Because
of (10.4) we can use Euclid’s results (1.2)(1.28) (except (1.22)) in our proofs.

Definition

Given distinct points O, A, the circle T
with center O and radius OA is the set
of all points B such that OA =~ OB. The
point O is the center of the circle. The
segment OA is a radius.

From this definition it is clear that a
circle always has points. The point A is
on the circle. Moreover, if [ is any line
through O, then by axiom (Cl) there
will be exactly two points on the line [,
one on each side of O, lying on the cir-
cle. However, it is not obvious from the
definition that the center is uniquely
determined by the set of points of the
circle.

Propesition 11.1

Let T be a circle with center O and radius OA, and let T be a circle with center O'
and radius O'A’. Suppose T'=T1" as point sets. Then O = O’. In other words the
center of a circle is uniquely determined.

Proof Suppose O # O’. Then we con- I
sider the line I through O and O'. Since s P —
it passes through the center O of T, it C o0 D

must meet I in two points C, D, satisfy-
ing C* OxD and OC = OD. :

Since T'=I", the points C,D are also on I', so we have O'C =~ O'D and
C+ O’ x D. We do not know which of O or O’ is closer to C, but the two cases aré
symmetric, so let us assume C * O O'. In this case we must have O % O’ %D by
the properties of betweenness(!). Then OC < O'C = O'D OD, which is impos-
sible, since OC = OD. Hence O = O'.

-

v 1w

less than a right angle (1.16). It follows

A, 501t is a tangent line.

0
Other

1ar

Now that we know that the center of a circle is uniquely determined. ;
makes sense to define the inside and the outside of a circle. o
pefinition i
Let [ be a circle with center O and radius OA. A point B is inside T (or in the
interior. of T) if B= O or if OB < OA. A point C is outside T (or exterior to ) if
pA < OC.

Definition

We say that a line [ is tangent to a circle T"if [ and " meet in Jjust one point A, We
say that a circle T is tangent to another circle A if I' and A have Jjust one point in
COMITOoI.

This definition of tangent circles is a little different from Euclid’s: His defini-
tion of two circles touching is that they meet in a point but do not cut each other.
Since it is not clear what he means by “cut,” we prefer the definition above, and
we will prove that these notions of tangency wm:\m,zam usual properties.

Proposition 11.2

Lel T be a circle with center O and radius OA. The line perpendicular to the radius
OA at the point A is tangent to the circle, and (except for the point A) lies entirely
outside the circle. Conversely, if a line 1is tangent to T" at A, then it is perpendicular
0 OA. In particular, for any point A of a circle, there exists a unique tangent line to

the aircle at that point.

Proof First, let I be the line perpendic-

ular to OA at A. Let B be any other

.uo_.i on the line I. Then in the triangle
OAB, the exterior angle at A is a right L
angle, so the anglés at O and at B are

G..TS that OB > OA, so B is outside the
Gircle. Thus [ meets I only at the point

; .H,ac% suppose that [ i§ a line tangent
01 at A. We must show that [ is per-
Pendicular to OA. Tt cannot be equal
04, G.momsmm that line meets I' in an-
- m_.@o:n Opposite A. So consider the
19m O, perpendicular to I, meeting
mm. I B+ A, take a point C on the
Tside of B from A, so that AB = BC

oth



(axiom (C1)). The AOBA = AOBC by
SAS, so we have OA = OC, and hence C
is also on I'. Since C # A, this is a con-
tradiction. We conclude that B = A, and
so [ is perpendicular to OA.

Corollary 11.3

If a line | contains a point A of a circle T, but is not tangent to T', then it meets I in
exactly two points.

Proof 1flis not tangent to I' at A, then L
it is not perpendicular to OA, in which

case, as we saw in the previous proof, it
meets I' in another point C. We must
show that I cannot contain any further
points of T'. For if D were another point )
of I on T, then OD = OA, OB is congru-
ent to itself, so by (RASS) (Exercise 10.9)
we would have AODB = AOAB. Then
AB =~ BD, so by axiom (C1) D must be
equal to A or C.

Proposition 11.4
Let 0,0, A be three distinct collinear points. Then the circle T with center O and

radius OA is tangent to the circle T with center O' and radius O'A. Conversely, if : o .

two circles T, I'! are tangent at a point A, then their centers O, 0" are collinear with

A.

Proof Let O,0’,A be collinear. We

must show that the circles T' and IV

have no further points in common be-

sides A. The argument of (11.1) shows o 0O A
that there is no other point on the line
0O’ that lies on both I’ and I". So sup-

pose there is a point B not on 00’ lying T’
on both I' and I''. We divide into two T
cases depending on the relative position /

of 0,0, and A.

O'AB = /. O'BA, using (L5). It follows
at . OBA =/ O'BA, which contradicts
m (C4). (This argument also applies
% Ok \wv

2 Ox*A=*0O'. Again using (1.5) we
that /. OAB = / OBA and / O'AB = B

plementary, so it follows that the
‘angles at B are supplementary (9.2).
‘then O, B, and O’ would be collinear
, which is a contradiction.

:

Conversely, suppose that ' and I/
. tangent at A, and suppose that

= A are not collinear. Then we let A
w be perpendicular to the line 00/,

‘and choose B on the line AC on the o’ i &
- side of OO’ with' AC =~ BC. It fol-
s by congruent triangles that OA =
and O'A =~ O’'B, so B also lies on T

o}

circles meet at a point A but are not tangent, then they have exactly two points

ﬂwmpmﬂ.. and Em% meet in an additional point B. We must show there are no
..a..m } Hw:“mammoﬁos points. If D is a third point on I" and I", then OD = OA and
= O'A, so by (1.7), D must be equal to A or B.

i m.gm above discussion of lines and circles meeting, we have seen that a line
wﬁoﬂou or two circles, can be tangent (meeting in just one point), or if they
_ 6§ are not tangent, they will meet in exactly two points. There is nothing
w..w_mm_wmwmﬁmm.ﬁmﬂ a line and a circle, or two circles, will actually meet if
ition % a position such that they “ought” to meet according to the usual
18 axion or this we need an additional axiom (and we will see later (17.3) that
“Hom s independent of the axioms of a Hilbert plane).




E. (Circle-circle intersection property). =)
Given two circles I, A, if A contains at A
least one point inside T, and A contains
at least one point outside T, then I" and
A will meet. (Note: It follows from Exer-
cise 11.3 and (11.5) that they will then 2
meet in exactly two points.)

Proposition 11.6 (Line-circle intersection property POU
In a Hilbert plane with the extra axiom (E), if a line | contains a point A inside a
circle T, then 1 will meet T (necessarily in two points, because of (11.2) and (11.3)).

Proof Suppose we are given the line L
with a point A inside the circle T'. Our
strategy is to construct another circle A,
show that A meets I', and then show c

that the intersection point also lies on .
Let OB be the perpendicular from O to [
(if O is on the line I, we already know
that I meets I" by (C1)). Find a point O’ ) of

on the other side of I from O, on the line
OB, with O'B = OB. Let A be the circle T :

with center O’ and radius r = radius of :

T'. (Here we denote by r the congruence

equivalence class of any radius of the

circle I'))

Now the line OO’ meets D in two points C, D, labeled such that O, C are on
the same side of O, and D on the opposite side.

By hypothesis, A is a point on [, inside I". Hence OA < r. In the right triangle
OAB, using (1.19) we see that OB < OA, so OB < 7. It follows that O'B < r = O'C,
so O' and C are on opposite sides of I. Hence O, C are on the same side of I. We
wish to show that C is inside I". There are two cases.

Case 1 IfO%Cx* B, then OC < OB < r, so Cisinside I.

Case2 IfCxOxB,thenalso CxOx 0, s0 OC < O'C = r, and again we see that
C is inside T'.

On the other hand, the point D satisfies O * O’ * D, so o> 0'D= v, so D s
outside I'.

PROP. XXII. B. I

Some Authors blame Euclid becaufe he does not demonttrate that
the two circles made ufe of m the conftrucion of this Problem {fhall
cut one another. but this 1s very plain from the determination he has

given, viz. that any two of the flraight lines DF, FG, GH muft be
greater than the third. for who is fo dull, tho’ only beginning to learn
the Elements, as not to perceive that the circle deferibed from the centre
F, at the diftance FD, muft meet FH betwixt F and H, becaufe ED
is lefler than FH; and that, for the like reafon, the circle deferibed
from the centre G, at the diftance GH or GM muft meet DG betwixt
D and G; and that thefe circles muft meet one another, becaufe FD
and GH are together greater than FG? and
this determination is eafier to be underftood
than that which Mr. Thomas Simpfon de-
rives from it, and puts inflead of Euclid’s, sh———rm—r—terr
in the 49. page of his Elements of Geo- DM, s H
metry, that he may fupply the omiflion he blames Euclid for; which
determination is, that any of the three ftraight lines muft be lefler than
the fum, but greater than the difference of the other two. from this
he fhews the circles muft meet one another, in one cafe; and fays that
it may be proved after the fame manner in any other cafe. but the
ftraight line GM which he bids take from GF may be greater than
sit, as in the figure here annexed, in which cafe his demonftration muft
be changed into another. |

Plate V. Simson’s commentary on (I.22) from his English translation of Euclid (1756).
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Now we can apply the axiom (E) to
conclude that T' meets A at a point E.
We must show that E lies on . We know
that OEx~v=~O'E and OB= OB by
construction, and BE is equal to itself,
so by (SSS) AOEB =~ AO’EB. It follows
that the angles at B are egual, so they
are right angles, so BE is equal to the 0 B o'
line I, and so E lies on I and I, as
required.

m

9

Remark 11.6.1

We will see later (16.2)_that in the Cartesian plane over a field, the circle-circle
intersection property is equivalentto the line—circle intersection property. In an
arbitrary Hilbert plane, the equivalence of these two statements follows from
the classification theorem of Pejas (cf. Section 43), but I do not know any direct
proof.

Using the new axiom (E) we can
now justify Euclid’s first construction
(1.1), the equilateral triangle. Given the
segment AB, let T be the circle with
center A and radius AB. Let A be the
circle with center B and radius BA.
Then A is on the circle A, and it is
inside T because it is the center of T
The line AB meets A in another point D,
such that A * B+ D. Hence AD > AB, s0
Dis outside T. -

Thus A contains a point inside I" and
a point outside I', so it must meet I'in a
point C. From here, Euclid’s proof shows
that AABC is an equilateral triangle.

In a similar way one can justify FEuclid’s other ruler and compass construc-
tions in Book I. Several of them depend only on using the equilateral triangle
constructed in (1.1). For (1.12) and (1.22) see Exercise 11.4 and Exercise 11.5.
Thus we have the following theorem.

Theorem 11.7
Euclid's constructions (1.1) and (1.22) are valid in a Hilbert plane with the exird
axiom (E). ‘

We can also justify the results of Euclid, Book III, up through (III.19) (noté

that (II1.20) and beyond need the parallel axiom). The statements (LI.10),
E:S“ (111.12) about circles meeting and (II1.16), (1I1.18), (I111.19) about tangent
lines can be replaced by the propositions of this section. (We omit the contro-
versial last phrase of (II1.16) about the angle of the semicircle, also called g
horned angle or angle of contingency, because in our treatment we consider
only angles defined by rays lying on straight lines.) In (111.14) Euclid uses (1.47)
{0 prove (RASS), but that is not necessary: One can prove it with only the axioms
of 2 Hilbert plane (Exercise 10.9). For (II1.17), to draw a tangent to a circle from
a point outside the circle, we need the line-circle intersection property (11.8)
and hence the axiom (E). (Note that the other popular construction of the tan-
gent line using (111.31) requires the parallel axiom!) The other results of Book 111,
up to (111.19) (except (I11.17)), are valid in any Hilbert plane, provided that we
assume the existence of the intersection points of lines and circles used in the
statement and proofs, and their proofs are ok as is, except as noted.

Theorem 11.8
Fuclid’s propositions (111.1) through (I1.19) are valid in any Hilbert plane, except
that for the constructions (TI1.1) and (II1.17) we need also the additional axiom (E).

Exercises

11.1 {a) The interior of a circle T is a convex set: Namely, if B, C are in the interior of T,
and if D is a point such that B D C, then D is also in the interior'of T.

(b) Assuming the parallel axiom (P), show that if B, C are two points outside a circle
[, then there exists a third point D such that the segments BD and DC are entirely
outside T'. (This implies that the exterior of I' is a segment-connected set. See also
Exercise 12.6.)

.2 Two circles I', I that meet at a point A are tangent if and only if the tangent line to
I'at 4 is equal to the tangent line to IV at A.

113 If two circles I and A are tangent to each other at a point A, show that (except for
the point A) A lies either entirely inside I' or entirely outside I

114 Use the line—circle intersection property (Proposition 11.6) to give a careful justifi-

mmaos owmsoﬁ%mooSﬁEaﬂth.Eowmﬁﬁm@oEm@ogﬁ@m%mu&o&miomm?ms
ine, :

115 mm.sww three line segments such that any two taken together are greater than the
third, use (E) to justify Euclid's construction (1.22) of a triangle with sides congruent
1o the three given segments.

11, . A i
6 Show ﬂ.rﬁ Euclid’s construction of the circle inscribed in a triangle (IV.4) is valid in
4Ny Hilbert plane. Be sure to explain why two angle bisectors of a triangle must



meet in a point. Conclude that all three angle bisectors of a triangle meet in the
same point.

11.7 Using (E), show that Euclid’s construction of a hexagon inscribed in a circle (IV.15)
makes sense. Without using (P) or results depending on it, which sides can you show
are equal to each other?

12 Euclidean Planes

Let us look back at this point and see how well Hilbert’s axioms have fulfilled
their goal of providing a new solid base for developing Euclid's geometry. The
major problems we found with Euclid’s method have been settled: Questions of
relative position of figures have been clarified by the axioms of betweenness; the
problematic use of the method of superposition has been replaced by the device
of taking SAS as an axiom; the existence of points needed in ruler and compass
constructions is guaranteed by the circle—circle intersection property stated as
axiom (E). Also, in the process of rewriting the foundations of geometry we have
formulated a new notion, the Hilbert plane, which provides a minimum context
in which to develop the beginnings of a geometry, free from the parallel axiom.
Hilbert planes serve as a basis both for Euclidean geometry, and also later, for
the non-Euclidean geometries.

In this section we will complete the work of earlier sections by showing
how the addition of the parallel axiom allows us to recover almost all of the
first four books of Fuclid's Elements. We will also mention two more axioms,
those of Archimedes and of Dedekind, which will be used in some parts of later
chapters.

Definition ,

A Euclidean plane is a Hilbert plane satisfying the additional axioms (E), the
circle-circle intersection property, and (P), Playfair's axiom, also called the par-
allel axiom. In other words, a Euclidean plane is a set of points with subsets
called lines, and undefined notions of betweenness and congruence satisfying
the axioms (I1)~(13), (B1)-(B4), (C1)-(C6), (E), and (P). The Euclidean plane rep-
resents our modern formulation of the axiomatic basis for developing the
geometry of Euclid's Elements.

We have already seen in Section 10 and Section 11 how to recover those
results of Euclid’s Books I and I1I that do not depend on the parallel axiom. The
first use of the parallel axiom is in (1.29). Since we have replaced Euclid’s fifth
postulate by Playfair's axiom, we need to modify Euclid’s proofs of a few early
results in the theory of parallels.

«:

So for example; to prove (1.29) we }
@H.oommm as follows. Given two parallel
jines I, m, and a transversal line n, we
must show that the alternate interior
angles « and B are equal. If not, con-
stuct a line I’ through A making an
angle o with n (axiom (C4)). By (1.27). I
will be parallel to m. But then [ and I’ B /A
are two lines through A parallel to m, so \
by (P), we must have =1 hence o = f.

Proposition (1.30) is essentially equivalent to (P). The existence of parallel
lines (1.31) follows from (C4) and (1.27) as mentioned before, so now we can
reinterpret (1.31) in the stronger form that given a point A not on a line L
there exists a unique parallel to [ passing through A. The remaining propositions
using (P), namely (1.32)-(1.34), follow without difficulty. In particular, we have
the famous (1.32), that “the sum of the angles of a triangle is equal to two right
,angles,” though if we want to be scrupulous, we would have to say that sum is
not defined, and rephrase the theorem by saying that the sum of any two angles
of a triangle is supplementary to the third angle.

Theorem 12.1
Euchd's_theory of parallels, that is, propositions (1.29)-(1.34), hold in any Hilbert
plane with (P), hence in any Euclidean plane.

Starting with (1.35), and continuing to the end of Book I'and through Book 1I,
is Euclid's theory of area. Since Euclid does not define what he means by this
new equslity, we must presume that he takes it as another undefined notion,
which we call equal content, just as the notion of congruence for line segments
and angles were taken as undefined notions. Since Euclid freely applies the
tommon notions to® this concept, we may say that he has taken the common
notions applied to equal content as further axioms, for example, “figures having
equal centent to a third figure have equal content to each other,” or “halves of
figures of equal content have equal content.”

Hilbert showed that it is not necessary to regard the notion of equal content
48 an undefined notion subject to further axioms. He shows instead that it is
Possible to define the notion of equal content for figures (hy cutting them up,
‘earranging, and adding and subtracting), and then prove the properties sug-

mmwﬂmm by Euclid’s common notions. To be more precise, we have the following
80tem.

WW@S&E 12.2 (Theory of area)
u...wnmuﬂawmi Plane with (P) there is an equivalence relation called equal content for
Medl figures that has the following properties:



(1) Congruent figures have equal content,

(2) Sums of figures with equal content have equal content.

(3) Differences of figures with equal content have equal content.
(4) Halves of figures with equal content have equal content.

(5) The whole is greater than the part.

(6) If two squares have equal content, their sides are congruent.

We will prove this theorem in Chapter 5, (22.5), (23.1), (23.2). For the present
you can either accept this result as something to prove later, or (as Euclid im-
plicitly did) you can regard equal content of figures as another undefined notion,
subject to the axioms that it is an equivalence relation and has these properties
(1)-(6). For further discussion and more details about the exact meaning of a
figure, the notions of sum and difference, etc., see Section 22 and Section 23.

Using this theory of area, the remaining results (1.35)—(1.48) of Book I follow
without difficulty. Note in particular the Pythagorean theorem (1.47), which says
that the sum of the squares on the legs of a right triangle have equal content
with the square on the hypotenuse. Also, the results of Book II, (II.1)-(11.14),
phrased as results about equal content, all follow easily. Proposition (I1.11), how
to cut a line segment in extreme and mean ratio, is used later in the construc-
tion of the regular pentagon. Only (I1.14), to construct a square with content
equal to a given rectilineal figure, uses the axiom (E).

Theorem 12.3 .

In a Hilbert plane with (P), using the theory of area (12.2), Euclid's propositions
(1.35)—(1.48) and (11.1)~(11.14) can all be proved as he does, using the extra axivm {E)
only for (I1.14). In particular, all these results hold in a Euclidean plane.

In Book II1, the first use of the parallel axiom is in (1I1.20), that the angle at
the center of a circle subtending a given arc is twice the angle on the circumfer-
ence stubtending the same arc. This result uses (1.32), that the exterior angle of a
triangle is equal to the sum of the two opposite interior angles, and thus depends
on the parallel axiom (P). The following propositions (I1I.21), (I11.22), and then
(111.31)~(II1.34) follow with no further difficulties. For the propositions (I11.23)-
(111.30) we need a notion of “equal” segments of circles, a congruence notion
that has not been defined by Euclid, though we can infer from the proof of
(I11.24) that it means being able to place one segment on the other by a rigid
motion. Indeed, if we take this as a definition of congruence, then the proofs of
these results are all ok (Exercise 17.13). The final propositions (I11.35)~(IIL.37)
make use of the theory of area for their statements, and depend on the earlier
area results from Books I and II.

Theorem 12.4
In Book 111, Euclid’s propositions (II1.20)~(111.37) hold in any Euclidean plane. The
last three (111.35)-(111.37) make use of the theory of area (12.2).
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Most of the results of Book IV require the parallel axiom (P), some need
circle-circle intersection (E), and some, notably (IV.10), (IV.11), require (P)
(E), and the theory of area. Thus we may regard the construction of the nmmﬁmm
pentagon as the crowning result of the first four books of the Elements, making
use of all the results developed so far. X

Theorem 12.5
All the propositions (1V.1)-(1V.16) of Euclid's Book IV hold in a Euclidean Eﬁsn..

We end this section with a discussion of two further axioms that are not
needed for Books I-1V, but will be used later. The first is Archimedes’ axiom.

A. Given line segments AB and CD, there is a natural number n such that n
gopies of AB added together will be greater than CD.

This axiom is used implicitly in the theory of proportion developed in Book
V, for example in Definition 4, where Euclid says that quantities have a ratio
when one can be multiplied to exceed the other. It appears explicitly in (X.1), in
a form reminiscent of the s-arguments of calculus: Given two quantities AB and
OD, if we remove from AB more than its half, and again from the remainder
remove more than its half, and continue in this fashion, then eventually we
will have a quantity less than CD. In modern texts this would appear as the
statement “given any ¢ > 0, there is an integer »n sufficiently large that 1/27 < &.”
Fuchid applies this “method of exhaustion” to the study of the volume of three-
dimensional figures in Book XII. When he cannot compare solids by cutting
into a finite number of pieces and reassembling, he uses a limiting process
where the solid is represented as a union of a sequence of subsolids so that the
remainder can be made as small as you like. See Sections 26, 27 for Euclid’s
theory of volume. ,

Archimedes’ axibm is Ema@mmmmﬁﬁ of all the axioms of a Hilbert plane or a
Huclidean plane, so we will see examples of Archimedean geometries that satisfy
(A) andsnon-Archimedean geometries that do not (Section 18).

The other axiom we would like to consider is Dedekind's axiom, based on
Bedekind’s definition in the late nineteenth century of the real numbers:

U..mﬂﬁcmo the points of a line [ are divided into two nonempty subsets S, T in
SUH & way that no point of S is between two points of T, and no point of T 1s
wmgmnu two points of . Then there exists a unique point P such that for any
A&8Sand any Be T, either A = P or B = P or the point P is between A and B.

HEm axiom is very strong. It implies (A) and (E), and a Euclidean plane with
mn_.uum,moanmm to be isomorphic to the Cartesian plane over the real numbers. A.m.wm
SEHISe 122, Exercise 12.3, (15.5), and (21.3).) So if you want a categorical



axiom system, just add (D) to the axioms of a Euclidean plane. From the point
of view of this book, however, there are two reasons to avoid using Dedekind's
axiom. First of all, it belongs to the modern development of the real numbers
and notions of continuity, which is not in the spirit of Euclid's geometry Second,
it is too strong. By essentially introducing the real numbers into our geometry, it
masks many of the more subtle distinctions and obscures questions such as
constructibility that we will discuss in Chapter 6. So we include this axiom only
to acknowledge that it is there, but with no intention of using it.

Exercises

12.1 Show that in a Hilbert plane with (P), the perpendicular bisectors of the sides of a
triangle will meet in a point, and thus justify Euclid’s construction of the circum-
scribed circle of a triangle (IV.5). Note: In a non-Euclidean geometry, there may be
triangles having no circumscribed circle: cf. Exercise 18.4, Exercise 39.14, and Prop-
osition 41.1.

12.2 Show that in a Hilbert plane Dedekind’s axiom (D) implies Archimedes’ axiom (A).
Hint: Given segments AB and CD, let T be the set of all points E on the ray CD for
which there is no integer n with n - AB > CE. Let § be the set of points of the line CD
not in T, and apply (D).

12.3 Show that in a Hilbert plane (D) implies (E). Hint: Follow the discussion in Heath
(1926), vol. I, p. 238.

12.4 For the construction and proof of (IV.2), to inscribe a triangle equiangular with a
given triangle in a given circle (assume also that you are given the center of the
circle), is axiom (E) necessary? Is (P) necessary?

12.5 Same question for (IV.6), to inscribe a square in a given circle.

12.6 In a Hilbert plane with (A), show that the exterior of a circle is a segment-connected
set (cf. Exercise 11.1). Without assuming either (P) or (A), this may be false (Exercise
43.17).

To each book are appended explanatory
notes, in which especial care has been taken to
guard the student against the common mistake
of confounding ideas of number with those of
magnitude.

- Preface to Potts’ Euclid,
London (1845)
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Geometry over
~ Fields

CHAPTER

eginning with the familiar example of the real Carte-
sian plane, we show how to construct a geometry sat-
isfying Hilbert's axioms over an abstract field. The
axioms of incidence are valid over any field (Section
14). For the notion of betweenness we need an ordered
| field (Section 15). For the axiom (C1) on transferring a
|l line segment to a given ray, we need a property () on
the existence of certain square roots in the field F. To
=s =" carry out Euclidean constructions, we need a slightly
stronger property (#%)-—see Section 16.

To prove the (SAS) axiom gver a field F, we revert to Euclid’s method of
superposition. In the case of ﬁwyooamﬁ% over a field this can be justified by
showing the existence of sufficiently many rigid motions (Section 17).

We end the chapter with some examples of geometries that do not satisfy
Archimedes’ axiom (Section 18).

We have seen that the geometry developed in Euclid's Elements does not
make use of numbers to. measure lengths or angles or areas. It is purely geo-
.Hm.ﬂn in that it deals with points, lines, circles, triangles, and the relationships
dinong these. .

In the centuries after Euclid, geometers began using numbers more and

More. At first number theory (arithmetic) and geometry were kept strictly apart.

Z.EME“FH theory dealt with positive whole numbers and their ratios, i.€., ﬁmaoﬁmpw
fﬂwm&. Any other magnitude was considered geometrically. Thus V2 was ng
f®8arded as a number. The fact that /2 is irrational was expressed by sayins

e diagonal of a square (a geometrical quantity) is not commensurable
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with the side of the square. This means that no integer multiple of the diagonal
is equal to any integer multiple of the side. As algebraic notation developed in
the Renaissance, the concept of number was enlarged, and geometric quantities
were treated more like numbers. A big step was taken by René Descartes (1596-
1650), who showed in his book La Géométrie how to construct the product, quo-
tient, and square root of line segments, having once fixed a unit line segment. He
was thus able to apply algebraic operations to line segments and write algebraic
equations relating an unknown line segment to given line segments. Descartes's
use of algebra in geometry led to the idea of representing points in the plane by
pairs of numbers, and thus to the modern discipline called analytic geometry.

Meanwhile, the concept of number was expanded from rational numbers to
include irrational numbers and then transcendental numbers as they were dis-
covered. By the end of the nineteenth century, considerations of limits and con-
tinuity made the real numbers R into the standard to be used in analytic geom-
etry, calculus, and topology. Also at the end of the nineteenth century, the
formalization of abstract structures in mathematics led to the concept of a field,
so that by analogy with the standard model over R, one could also consider a
geometry over any abstract field. : .

The geometry taught today in high schools and colleges has become a sort
of hybrid between the purely geometric methods of Euclid and the algebraic
methods of Descartes, with occasional notions of continuity thrown in. One of
the purposes of this book is to clarify the blurred distinctions between these dif-
ferent approaches. Therefore, we will pursue two different logical tracks. One is
the axiomatic approach of Euclid and Hilbert, starting with geometrical postu-
lates and proving results in logical sequence from them. This theory is built on
the platform of the axioms of geometry. The other track is a geometry over a
field. In this case the theory is built on a logical platform given by the algebraic
definition of a field, or as we may say, the field axioms. The geometrical notions
of point, line, betweenness, and congruence are defined in terms of field prop-
erties, and all proofs go back to the algebraic foundations. These geometries
built from fields will be models of the axiomatic geometries. -

In this chapter we start with an informal section on the real Cartesian plane.
Then, in the following sections, we develop a rigorous theory of Cartesian
planes over an abstract field. In Chapter 4 we will make the two tracks converge
by the introduction of coordinates into an abstract geometry (at least in the case
where the parallel axiom (P) holds).

13 The Real Cartesian Plane

In this section we will make clear what we mean by the real Cartesian plane,
which is the plane geometry over the real numbers. Our proofs will be informal,
using well-known results from high-school geometry and analytic geometry.

_.. ; We accept as given the field of real ﬁ

i

aumbers R. We call a point an ordered
pair (a,D) of real numbers, and the set
ofall such ordered pairs is the Cartesian
Ewﬁm. As usual, we call the set of points
(a,0) the x-axis, and the set of points
(0.b) the y-oxis, and their intersection
(0,0) the origin.

P=(ab)

R

- —

{v,0] i

A line in this plane is the subset defined by a linear equation ax + by+c=0,
with a, b not both zero. Among these are the vertical lines, which can be written
asx = a, and every other line can be written in the form y = mx + b. In this case
we call m the slope of the line, and b its y-intercept. For completeness, we will
say that a vertical line has slope co.

Two lines are called parallel if they are equal or if they have no points in
gommon. By looking at the equations of two lines, and solving those equations
simultaneously, we see that the lines are parallel if and only if they have

the same slope. It follows immediately that if I;, 1, 13 are three distinct lines, and
Iy|[Ty and L||Ts, then I [’z Indeed, all three must have the same slope. In Euclid's

Flements, this result appears as (1.30) and is proved there using the parallel pos-
tulate plus earlier results from Book I. Here in the Cartesian plane we have a

trivial proof just by looking at the equations of the lines.

Let us give another, less trivial, example of how useful the analytic method
can be for proving geometric results. We will show that the three altitudes of a
friangle meet at a point. (Compare this with the geometric proofs given earlier
in Section 5.)

Proposition 13.1

In the real Cartesian plane, the aree altitudes of any triangle all meet at a single
point.

-~

Froof Recall that an altitude of a triangle is the line through one vertex that is
Perpendicular to the opposite side. First let us move the triangle so that one
edge lies along the x-axis, and the opposite vertex lies on the y-axis. .
~ The we can call the vertices A = (g, 0), B = (0,5), and C = (¢, 0). The y-axis is
.,uw.. construction one of the altitudes of the triangle. Our strategy is to E&..Em
“4uations of the other two altitudes, see where they meet the y-axis, and verify
that they meet it at the same point. . .
The line AB has slope —b/ a, so the altitude through C, which is @mﬁumﬁ&o‘s.
EHJ.EW line, will have slope a/b. (Here we use the fact that if £Wo @mu@mﬁ&mn.-
flid Uies have slopes m; and mj, then mym; = —1.) So the equation of the alti-
€ through ¢, using the point-slope formula, is

lar



=2
mlwﬁx c).

To intersect this with the y-axis, we set
x = 0 and obtain y = —ac/b. Bz (0,b)
Now consider the line BC. It has
slope —b/c, so the altitude through A will
have slope ¢/b. Its equation becomes

y= M? —a).
Setting x=0, we obtain y= —ac/b. b
Since this is the same point as the pre- C =(c,0} A= (a,0]

vious calculation, we find that the three
altitudes meet at a point. .

Let us reflect a moment on the significance of this proof.

First of all, the reader may object that we have used some facts without
proof, such as the result about the slopes of perpendicular lines, or the possibil-
ity of moving the triangle into the special position of the proof. However, I am
assuming that anyone who has studied some analytic geometry could fill in
those missing arguments satisfactorily.

The more serious question is, how do we respond to someone who says, with
a simple analytic proof'like that, why bother with geometric proofs from axioms?
If you believe that there is only one true geometry, then indeed this proof would
be sufficient. But modern mathematics has abandoned the naive position that
there is only one truth. Instead it asks, what can be proved within each logical
framework, within each separate mathematical theory? This proof shows that
the result is true within the logical framework of the real Cartesian plane, using
algebra of the real numbers as a logical base. Having found the result to be true
in this framework, we certainly expect it to be true in the framework of axiom-
atic Fuclidean geometry. However, this proof gives no hint at all about how to
find a proof in the abstract axiomatic geometry. In other words, if an analytic
proof shows that a result is true in the geometry of the real Cartesian plane, that
does not imply a proof, or even guararitee the existence of a proof, in the
abstract axiomatic geometry. For example, think of Archimedes’ axiom (18.4.2).

For these reasons we will preserve two separate logical tracks, the abstract
axiomatic approach, and the analytic-geometric approach, until such time as we
can prove that the two tracks converge again, using abstract ordered fields.

Next we turn to one of the great insights provided by the algebraic perspec-
tive, namely Descartes’s discovery that the ruler and compass constructions of
Euclid's geometry correspond to the solution of quadratic equations in algebra.
To be more precise, let us regard a construction problem as giving certain points
in the plane, and requiring the construction of certain other points.

-
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Flate VI. Title page of La Géomérrie of Descartes, first separate French edition (1664).
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Theorem 13.2 (Descartes)

Suppose we are given points Py = (a1,b1),...,Py = (an, by) in the real Cartesian
plane. (We also assume that we are given the points (0,0) and (1,0).) Then it is pos-

sible to construct a point Q = («, f) with ruler and compass if and only if o and B can

be obtained from ay, ..., an, b1, ..., by by field operations +, —, -, ~ and the solution

of a finite number of successive linear and quadratic equations, involving the square

roots of positive real numbers.

Proof A ruler and compass construction consists of drawing lines through given
points, constructing circles with given center and radius, and finding inter-
sections of lines and circles.

Given two points Py = (a1,b1) and P, = (az,b2), the line passing through
them has equation

_bh—D

s (x — ).

y—h
Its coefficients are obtained by field operations from the initial data ay,a, by, bs.
A circle with center (a,b) and radius r has equation

(x—a)+ y—-b)?=r%

This is a guadratic equation whose coefficients depend on a, b, and r2. Note that
r may be determined as the distance between two points P; = (a;,b;) and P, =
(ag,bz), in which case

= (1 I.&Nvm + (b — wwvw.

To find the intersection of two lines, we solve two linear equations, which
can be done using only field operations.

To intersect a line with a circle, we solve the equations simultaneously,
which requires solving a quadratic equation in x. Assuming that the line meets
the circle, we will need to take square roots of positive numbers only —cf. Exer-
cise 16.6.

To intersect two circles, we first subtract the two equations, which elimi-
nates the x? and y? terms. Then we must solve a quadratic with a linear equa-
tion, leading to another quadratic equation in x.

In other words, to find the coordinates of a point Q = (a,f) obtained by 2
ruler and compass construction from the initial data Py, ..., P,, we must solve &
finite number of linear and quadratic equations whose coefficients depend on
the coordinates {a;, b;) and on quantities constructed in earlier steps.

Conversely, the roots of any linear or quadratic equation can be constructed
by ruler and compass, given lengths corresponding to the coefficients of the
equations, and given a standard length 1. Indeed, such equations can be solved
(using the quadratic formula) by a finite number of applications of field oper-

Ations +; = = and extractions of square roots of positive numbers, and each of
these five operations can be accomplished using ruler and compass.

For the sum and difference of two line segments, simply lay them out on the
same line, end to-end for the sum, or overlapping for the difference.

ror the product, lay the segment a on
the x-axis, and the segments 1, b on the b
y-axis. Draw the line from 1 to a, which
will have equation y = —(1/a)x + 1. The
ﬁmﬁ&& line through » has equation \
y=—(@1 /a)x+b. This intersects the x-
axis in the point (ab,0), and thus we
construct the segment ab out of the seg-

ments 1,4, b. Qa ab
For the guotient, put 1 on the x-axis,
and a, b on the y-axis. A similar construc- &
tion gives the point b/a on the x-axis.
t h/o

To construct the square root of a
seement a, lay out a on the positive x-
axis, and —1,on the negative x-axis.
Bisect the segment from —1 to a, and o
draw the semicircle having that seg-
ment as diameter. A brief computation .
with the equation of the circle shows 5_4 ) . 1T
that it meets the y-axis at the @owdﬁ/,\m..

So Here we have an algebraic criterion for deciding the possibility of a ruler
and compass construction. The method of proof may not lead to an elegant con-
Struction, but at least one can determine the possibility of such a construction in a
Systematic manner. This theorem is a striking example of the insight into geo-

etrical questions given by the algebraic point of view. As Descartes (1637) says:

One can construct all the problems of ordinary geometry without doing anything
more than what little is contained in the four figures which I have explained;
which is something I do not believe the ancients had noticed: for otherwise they
Would not have taken the trouble to write so many fat books, where already the
cﬂm.a of their propositions makes it clear that they did not have the true method for
E&Em them all, but merely collected those which they happened to come across.



As a practical application of this result, we will ind expressions using nested
square roots for some lengths that are constructible with ruler and compass,
such as the sides of regular polygons inscribed in a circle. Note that if a particu-
lar angle o is constructible, then its trigonometric functions, in particular sing
and cosa, can be expressed using square roots.

For example, from the right isosceles
triangle with sides 1,1, v/2 we obtain

1
Sin 45° = cos45° = 5 V2.

From the 30°-60°-90° triangle with
sides 1,/3, and 2 we obtain

!

cos 60° = sin30° =1,

8in 60° = cos 30° = wz\w

Proposition 13.3

The length of the chord d of a circle of
radius 1 subtending an angle o at the
center of the circle is given by

d=+/2 —2cosa.

Proof The law of cosines gives d? =
12412 — 2 cos a, from which the result
follows immediately.

So for.example, the side of the regular octagon inscribed in the unit circle
will be

d=+/2~20c0s45° = /2 — +/2.

Proposition 13.4
In a circle of radius 1, the length of the side of a regular decagon is 1(v/5-1).

Proof Let us consider the triangle ABC formed by two radii and one side of the
decagon. Then AB = AC = 1, and BC = x is the side of the decagon. The angle at
A is 2m/10 or 36°, so the angles at B and C are 72° each. Let BD bisect the angle
at B. Then the two halves are both 36° angles. From this it follows that AABD 18
an isosceles triangle, and ABCD is an isosceles triangle similar to the original
triangle AABC.

Therefore, BD =x and AD=x and
cD = 1 — x. Writing the ratios of corre-
sponding sides of the similar triangles
ABCD and AABC we have

1—x
X

&
=1
Hence x*+x—1=0, and solving
with the quadratic formula gives x =
(/5 — 1), as required.

Remark 13.4.1 .

This result allows us to give an analytic proof of the construction of the regular
pentagon (4.3). Indeed, letting the radius OA be 1, then OG =1, GA = 14/5, and
OH = w?\wl 1). Thus A,I,] are vertices of the regular decagon, and so IJ is a

side of the regular pentagon. For another proof using complex numibers, see
(29.1).

Proposition 13.5 ) A .
In a circle of radius 1, the side of the regular pentagon is 14/10 - 24/5.

Proof Applying the law of cosines to the triangle AABC of (13.4), we get
12 =12 4+ %% — 2xcos 72°.

From this we obtain cos72° = (/56— 1). Since a side of the regular pentagon
subtends an angle of 72° at the center of the circle, from (13.3) we have that the
side of the pentagon is :

d=+2—2c0872° =1+/10 — 2+/5.
N

~

Exercises

13.1 Given AB = 1, construct segments of length v/2, v/3, v/5, V6, +/7, V10 in 5 steps or
fewer each, making the constructions independent of each other.

13.2 Show that any quantity obtainable from the rational numbers by a finite H:E%Umw of
operations +, —, -, —, v/, can be written in a standard form r- A, where re Q is a
rational number and A is an expression involving only integers, +, — and V.
In the following problems, please express your answers always in standard Moddv.
ACSmo%ESmﬁoqv this standard form is not unique —see Exercises 13.7, 13.12 below.

183 Express (V5 +1)/v/10+2v/5 in standard form. .



13.4

13.5
13.6
13.7

13.8
13.9

13.10

13.11

13.12

13.13
13.14

13.15

13.16
13.17

Check your H.mmc.: by mz&sm the decimal m@ﬁ?&mg with a n&oﬁmﬁoﬂ i

- SR AT RTINS K e wos we s mams g
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. x e : x g
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- 3 ¥
Find sin 224° and cos22}° as expressions 54075& mo_c.mam roots in standard form.

Find the side of a regular 16-gon inscribed in the unit circle. ; T

Find sin 112° and cos11%° in standard form.

Three students working on the same problem came up with the following answers, -

~v5+ /11 +6+/2. , L
b. 3++7-24/10. o 4 -
¢ VZ++14-6v5. o . s

Two answers were correct, and one false. Find which two were correct, and prove
that they are equal. Can you express the correct answer in a simpler form? How
can you modify the third student's answer so that it becomes correct? *

Find the length of the edge of a regular tetrahedron inscribed in a unit sphere.

Find the area of the largest equilateral triangle that is contained in a m@ﬁmam om
side 1. i

If a,b € Z, and if a + bv/Z has a square root in Q(+/2), then the square root is actu-
ally in NT\l | .

If a,b € Z, give a method for deciding whether v/a -+ bv/2 € Z[v/2]. Are the follow-
ing squares in Z[v/2]? If so, find the square root. :

a. 627 4 442+/2. :
b. 1507 + 1024+/2. , .

c. 2107 + 1470v/2.

Verify

V5 +24/5 = /5 = 24/5 = /10 — 2+/5.

Also, show that none of these three nested radicals is in Q(v/5). This is another
example of nonuniqueness of the standard form.

Express sin72° as nested radicals in standard form. Check by computing decimal
equivalents with a calculator.

Same problem for cos 36°, sin 36°.

Find cos 24°, sin24°, cos12°, sin12°, and the side of the regular 15-sided @o@mos.
inscribed in the unit circle. Express in standard form, and check decimal equiva-
lents with the calculator.

Find the side of a regular pentagon circumscribed around a unit circle.

standard form.
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L & &
e )
.
w1y - i %
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~ H. Lenstra. The circle and its center O

1. line OA.

4. gircle DO, get E. S~
5. line AE, get .

Q?.mb a right ms%m mﬁ 0, a wo:\; Bon
oﬁm arm, and a point A, construct «ﬁ%
d&ma and-compass a circle with ommﬂmn
- O, meeting the arms of the right mﬁ%o
at G, D, such that AD is parallel to BC
A@mﬁ = 9 steps, not counting lines AD,
BC).

8

J Given mmwgmdﬁm of Hodmgm 1,a,b in the plane, construct S&% Hdem mS& nogﬁmmm ]
a length x satisfying % — ax — b = 0. (If you use the quadratic mouEEm tma =25

L

smEm mmogmgomp ideas from Exercise 13.18, @mﬂ =14.) o 4

Egm Euclid’s (XIIL.5), which says that the Emdmg woﬁbm& of the mﬁmm of a penta-

~ gomn, a hexagon, and a decagon inscribed in the same circle is a right Ems.mﬂm Con-

clude. Emm the segment AH in the construction of Problem 4.3 is equal to 5@ side of

- Em pentagon.

i T

Verify the following construction of a
regular pentagon in 13 steps, due to

are given.

N circle AO, get B, C.
3. line BC, get D.

3 >k

8. circle DF, get G, H!
- circle FG, get I K.
8. oﬁ&m FH, get L, M.

Cl

wE& the field extension of @ obtained by adjoining the coordinates of the point
= (a,), the center of the inscribed circle of the triangle with vertices A = (0, 0);
= ( 1,2), and ¢ = (2,3). Answer: Q(v/2, 1/65).



14 Abstract Fields and Incidence : Omﬁm&mﬁ Emdm given by ordered pairs

In this section we start with the algebraic structure of a field, and based on f]
field we will obtain a geometry. Thus, using a fleld, we obtain a model of ¢
abstract geometry determined by Hilbert's axioms. Different fields will give d
ferent geometries, so we will obtain many different models and many differe
Euclidean geometries. We will investigate what properties of the field are need
to make each of Hilbert's axioms hold. This will help demonstrate the inde e
dence of the axioms.

Hilbert's axiom system is based on the undefined notions of point, L
betweenness, and congruence for line segments and for angles. These und
notions are limited only by having to satisfy all the axioms.

To make a model of the geometry within another mathematical fa
work, in this case algebra, we must say what the interpretation of the unde
notions is to be in our model, and then we must prove that the axioms ho!
this interpretation. i

We start then, with a field, and to fix the ideas we recall the defini i w-+by+c=0

2 feld o F, with a,b not both
Definition \ \
A field is a set F, together with two operations, +, -, i.e., for each a,b € F ther Ty can also be written in
are given a+ b € F and a - b € F, subject to the following conditions: m x = ¢, in which case we
or the form y=mx+D.
e we say that the line
| for the line x =¢, we
0. Here o is just a
t an element of the field

e am& numbers. In that model we mc@@o%..
points, lines, angles, betweenness, and cong
since we are starting with an miu#am&\ mmE F,

‘or Iy if we want to indi-
omﬁmm the Cartesian plane
" is the set F2 of ordered
nts of the fleld F, which .v
ints of I1. A line is a subset

ear equation

(1) The set F, together with the operation +, forms an abelian group, namel

(i) (a+b)+c=a+ (b+c) forany a,b,ceF,
(i) a+b=b+aforanya,bekF,
(iii) there is an element 0 € Fsuchthata+0=aforallaeF,
A. ) for each a e F there is an element —a € F such that a + (—a) = 0.

(2) The set F* = F — {0}, together with the operation - forms an abelian g
namely,

(i) (ab)c = a(bc) for all a, b, c € F*,

(ii) ab = ba for all a,b € F*,
(i) there is an element 1 € F* such that a- 1 = a for all a € F*,
(iv) for all a € F*, there is an a™! € F* such thata-a™! = 1.

of two elements F = (o, _V_
fion and multiplication
e plane II over F has
ts and six lines, shown
. the diagram. Note in
he two “diagonal” lines
geometry.

(3) The operations + and - are related by the distributive law
a(b+c)=ab+ac.

Note in particular that in our definition of a field 0 # 1, and multiplica
always commutative. We leave to the reader to verify other elementary |
erties of a field, such as 0-a=0forall a e F. .

Our first step in making a geometry is to say what we mean by poi . that any two points lie on a line. Since we can p
lines. Of course, we take our cue from the “standard” model of Euclidedt&



A change of the form

. mx\uxl@‘
By =y,

ometry shows that we can find a linear equation, with coefficients in the field F,
that determines a line containing the two given points. if)
(12) says that every line has at least two points. Since any field F has at least
the two distinct elements 0,1, by putting x = 0,1 if the line has the fo
Yy =mx-+b, or by putting y = 0,1, if the line is x = ¢, we obtain two points .
any line. . . the x-axis fixed, but replace
(I3) says that there exist three noncollinear points. Indeed, we can alwa; by another line through the a
take (0,0), (0,1), (1,0), and we can see easily that these do not lie on any line. i1 Xx-axis may be moved by an- (01 \w
(P) says that there is at most one parallel to a given line I through a given the sformation, interchang-
point P. In fact, the stronger statement holds that there is exactly one line paral- 1e 1 fx and y.
lel to I through P, so that TI will be an affine plane, in the terminology of .
cise 6.5. Recall that parallel means that two lines do not meet unless they a
equal. In the plane IIp, we see immediately that two lines are parallel if
only if they have the same slope. So given a line , let its slope be m. Then the
familiar “point-slope” formula of analytic geometry shows that there is a unique
line of slope m passing through the point P. This will be the parallel to L. .

all these gives a transformation that moves
iy other desired axes and unit points.

1
the.

Before introducing the further notions of betweenness and congruence
our Cartesian plane over a field F, there are already some interesting
nections between algebraic properties of the field F and incidence properti
the plane TIr. To investigate these, it is useful to be able to change coordinat

of coordinates is linear, lines in the new cot
I equations, so it is equivalent to describe th
her the old or the new coordinates.

Proposition 14.2 ome applications.

In the Cartesian plane 11 over a field F, it is possible to make a linear chan
variables _
guration in’ the plane Iy of four points A

¥ =ax+by+c, i
and AD||BC if and only if the characteristic

Yy =dxtey+f,
such that the new coordinate axes are any two given intersecting lines, and the 1

unit points are any given points P, Q on them not equal to their intersection point already seen the existence (14.0.1), since any .

 the subfield {0,1} of two elements with ad

Proof Since a composition of linear changes of variables is again one, w
proceed one step at a time. First, a change of the form

A ¥ =x—a, Y\ Q
N\ =Y - wv
will move the origin (0,0) to the point
E=(a,b).
Next, a transformation of the form .
x' = ax, (os1] ¢ B
Yy = by, , . (Pappus’s theorem) Ny

. plane over a field F, suppose we are given lines
will move the unit points to any other (0,6) (1,0) d A,B'.C' em such that AC!|A'C QS&%WQ_E\Q. 7
points on the same axes. .

, suppose that such a configuration exists in
coordinates such that C becomes the new o
1en B will be the point (1,1); BC will be the i
-ty = 1. In this configuration, AD||BC, so the eq
have no common solution. Solving, we obtain

as long as 2 # 0. We conclude that this conf
‘the charactistic of F'is 2.




Proof Suppose that I,m meet at a point
O (we leave the case I|lm as Exercise
14.1). Choose coordinates such that O is
the origin, and A, B’ are the unit points.
Let C be the point. (0,a) and let C’ be

the point (b,0). Then writing the equa- c
tions of the lines involved, we find that A
B=(0,ab) and A'=(ab,0). Thus the .

line BA’ has slope —1, hence is parallel .
to AB'. | /S

Remark 14.4.1

It is possible to define a Cartesian plane over a skew field F (which is a1
gebraic structure the same as a field, except that the multiplication Smm.ﬂ.
be commutative). Then Hilbert (1971) has shown that the skew field
commutative if and only if Pappus's theorem holds in the associated pi

IIp. S

Example 14.4.2
In the Cartesian plane over the field F,
assuming characteristic 0, there is a
configuration such as the one shown
(where all lines that appear parallel are A r
assumed to be parallel, namely DE||BC,
DF||AC, EF||AB, GH||BC, and BH||GE) if
and only if v2 € F.

Indeed, to analyze this situation,
take B to be the origin, BC and BA the
axes, and D, F the unit points. Then A = D €
(0,2), E = (1,1), C=(2,0). Let G have v
coordinates (0,a). Then H = (2 —a,a).
The line BH will have slope a/(2 —a),
and the line GE will have slope 1 —a.
The parallelism BH|GE then requires
a/(2—a)=1-—a,or, equivalently, a® —
4a + 2 = 0. Solving with the quadratic B
formula gives a = 2 £ V2.

For this configuration to exist, it is
necessary and sufficient that a € F, and
this is clearly equivalent to V2 eF, as
required.

1at Desargues’s theorem holds
Cartesian plane over a field
n a configuration as shown,
|A’G’ and AB||A'B’, prove that

ne a skew field (also called a division ring) to be the same m.w,
‘assuming property 2(ii), that multiplication is commutative.

the same definition of points and lines, show that the
cew field F still satisfies the incidence axioms (11)-(I3) and
4.1. : _

v that a skew field is commutative (i.e., is a field) if and -
...ﬁnﬁﬁomﬁou 14.4) holds in the Cartesian plane over F.

the following problems, assume that you are working in
 field F of characteristic 0. Give necessary and sufficient con
iven configuration to exist. Assume that all lines that appear to
d apparent right angles are right angles.

eF. 145 Ans: V13 €F.




14.6 / 147 A

14.8

14.9

In each of the following four problems, suppose that you are given the triangl
Make a ruler and compass construction of the diagram shown. In the first three,
are the midpoints of the sides. In the last, they are one-third of the way along each
(Par = 20 to 25 steps each.) _

14.10 A

m

ed Fields and Betweenness

ned notion we need to interpret in the Cartesian plane
mess. It turns out that this is not possible over an arbitra




