Übungen zur Mathematischen Logik

Blatt 9

- (44) ZUSATZAUFGABE: Prüfen Sie, ob $\forall v(\Phi \to \Phi) \to (\Phi \to \forall v\Phi)$ im Kalkül herleitbar ist. (1 Punkt)
- (45) Geben Sie für folgende Formeln eine Herleitung im Kalkül an:
 - (a) $\forall v(\Phi \to \Psi) \to (\forall v\Phi \to \forall v\Psi)$ (2 Punkte)
 - (b) $\forall v(\Phi \to \Psi) \to (\exists v\Phi \to \exists v\Psi)$

(Hinweis: Verwenden Sie Teil (a) dieser Aufgabe.) (1 Punkt)

- (c) $\forall v_1 \forall v_2 \Phi \rightarrow \forall v_2 \forall v_1 \Phi$ (2 Punkte)
- (46) Sei $\mathfrak{M} = \langle M, \ldots \rangle$ eine \mathfrak{L} -Struktur, $\mathfrak{L}(M) := \mathfrak{L} \sqcup \{\dot{m}; m \in M\}$ die Spracherweiterung, die für jedes Objekt aus dem Universum eine zusätzliche Individuenkonstante enthält.

Ferner sei $T := \{\Phi; \ \Phi \text{ ist } \mathfrak{L}(M)\text{-Aussage und } < M, \dots, m >_{m \in M} \models \Phi \}$ die $\mathfrak{L}(M)\text{-Theorie von } \mathfrak{M}$. (Jedes \dot{m} wird durch m interpretiert.)

Zeigen Sie, dass T eine vollständige Henkin-Theorie ist. (2 Punkte)

DEFINITION: Sei \mathfrak{L}^* eine Spracherweiterung von \mathfrak{L} . Seien $T \subseteq \mathfrak{L}$ und $S \subseteq \mathfrak{L}^*$ zwei Aussagen-Mengen mit $T \subseteq S$. S heißt genau dann konservative Erweiterung von T, wenn für jede \mathfrak{L} -Aussage Φ gilt: $T \vdash_{\mathfrak{L}} \phi \iff S \vdash_{\mathfrak{L}^*} \Phi$.

(47) Sei T eine widerspruchsfreie Menge von \mathfrak{L} -Aussagen, T_H die Henkinisierung von T. Zeigen Sie, dass T_H eine konservative Erweiterung von T ist.

(3 Punkte)

Abgabe: Am Montag, dem 10. Juli 2006, in der Vorlesung.

Hinweis: Die Fachschaften Mathematik und Physik laden herzlich ein zum

Sommerfest der Fakultät

am Donnerstag, dem 13. Juli 2006 ab 17 Uhr

zwischen dem C- und dem D-Bau.

Informationen zur Vorlesung:

http://www.mathematik.uni-tuebingen.de/~logik/