
ON THE SPEED OF A PLANAR RANDOM WALK

AVOIDING ITS PAST CONVEX HULL

By Martin P.W. Zerner

Abstract. We consider a random walk in R
2 which takes

steps uniformly distributed on the unit circle centered around the

walker’s current position but avoids the convex hull of its past

positions. This model has been introduced and studied by An-

gel, Benjamini and Virág. We show a large deviation estimate for

the distance of the walker from the origin, which implies that the

walker has positive lim inf speed.

1. Introduction

Angel, Benjamini and Virág introduced and studied in [1] the following
model of a random walk (Xn)n≥0 in R

2, which they called the rancher. The
walker starts at the origin X0 = 0. Suppose it has already taken n steps
(n ≥ 0) and is currently at Xn. Then its next position Xn+1 is uniformly
distributed on the unit circle centered around Xn but conditioned so that
the straight line segment Xn, Xn+1 from Xn to Xn+1 does not intersect the
convex hull Kn of the past positions {X0, X1, . . . , Xn}, see Figure 1.

Note that (Xn)n≥0 is not Markovian since in general one needs to know
the whole history of the process in order to determine the transition prob-
abilities for the next step. This makes this model more difficult to analyze
than a Markovian random walk, a property it shares with many other self-
interacting processes, see [1] and also [2] for references. We do not claim that
this model is of particular importance or that its definition is very natural.
However, in the class of all self-interacting processes it seems to be among
the few models which are at least partially analyzable and still have some
striking properties.

Several such properties have been conjectured by Angel, Benjamini and
Virág in [1]. Based on simulations and heuristics, the authors of [1] believe
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Figure 1. Three steps of the walk. X3 is uniformly dis-
tributed on the bold arc of the circle with radius 1, centered
in X2.

e.g. that the direction of the walk converges, i.e. that Xn/‖Xn‖ converges
P -a.s. to a random direction, see [1, Conjecture 1]. Moreover, if we denote by
wn as a measure for transversal fluctuations the maximal distance of a point
in Kn from the line X0, Xn, then Angel, Benjamini and Virág conjecture
that wn grows like n3/4, see [1, Conjecture 2].

As far as results are concerned, the only major rigorous result which has
been proved so far for this model to the best of our knowledge is that the
walk has positive lim sup speed, i.e. there is a constant c > 0 such that P -a.s.
lim sup ‖Xn‖/n > c as n → ∞, see [1, Theorem 1]. Here (Ω,F , P ) is the
underlying probability space.

The purpose of the present paper is to improve this result by showing the
following.

Theorem 1. There is a constant c1 > 0 such that

(1) lim sup
n→∞

1

n
logP [‖Xn‖ ≤ c1n] < 0

and consequently,

(2) lim inf
n→∞

‖Xn‖
n

≥ c1 P -a.s..

In particular, (2) proves [1, Conjecture 4]. We expect but were not able to
prove that the speed lim ‖Xn‖/n exists and is P -a.s. constant, as conjectured
in [1, Conjecture 5].

Let us now describe how the present article is organized. The next section
introduces general notation and gives a short overview of the proof. In
Section 3 we introduce some sub- and supermartingales, which enable us in
Section 4 to bound exponential moments of the time it takes the diameter of
the convex hull Kn to increase. From this we deduce in Section 5 estimates
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for the diameter of Kn similar to the ones claimed in Theorem 1 for ‖Xn‖
and show how this implies Theorem 1.

2. Notation and outline of proof

We denote by dn the diameter ofKn. Since (Kn)n is an increasing sequence
of sets, (dn)n is non-decreasing. The ladder times τi at which the process
(dn)n≥0 strictly increases are defined recursively by

τ0 := 0 and τi+1 := inf{n > τi : dn > dτi} (i ≥ 0).

It follows from [1] that P -a.s. τi < ∞ for all i ≥ 0. In Section 4 we will
reprove this fact by showing that the differences

∆i := τi+1 − τi (i ≥ 0),

between two successive finite ladder times have some finite exponential mo-
ments. Note that τ1 = 1 since d0 = 0 and d1 = 1 and observe that the τi’s are
stopping times with respect to the canonical filtration (Fn)n≥0 generated by
(Xn)n≥0. Since the diameter of a bounded convex set is the distance between
two of its extremal points there is for all i ≥ 1 with τi <∞ a (P -a.s. unique)
0 ≤ k(i) < τi such that dτi = ‖Xτi − Xk(i)‖, see Figure 2. For x ∈ R

2 and
r > 0 we denote by B(x, r) the closed disk with center x and radius r. If
τi <∞ then

σi+1 := inf{n ≥ 0 | Xn /∈ B(Xτi , dτi) ∩B(Xk(i), dτi)}
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Figure 3. Idealized picture, assuming dτi = ∞. Whenever
the walker crosses a wedge for the first time, which occurs at
a positive rate, it has in the next step a positive drift towards
the boundary of the lens.

is the exit time of the walk from the large lens shaped region shown in Figure
2, which we shall refer to as the lens created at time τi. Observe that Kτi is
contained in the lens created at time τi. Moreover,

(3) τi+1 ≤ σi+1

since if σi+1 <∞, Xσi+1
has a distance from either Xτi or Xk(i) greater than

dτi .
We have now introduced enough notation to be able to outline the idea of

the proof of Theorem 1.

Outline of Proof. To show that (‖Xn‖)n is growing at a positive rate we
shall first show that (dn)n is doing so. To this end we shall bound exponential
moments of the ∆i’s. This is the heart of the proof and done as follows.

Suppose that dn is already quite large and that we have just reached a new
ladder time τi, at which the diameter has increased. Due to (3) the diameter
can stay constant only as long as the walk is hiding in the lens created at
time τi. However, there are two mechanisms, corresponding to Lemmas 4
and 5, which ensure that the walk cannot hide in the lens for too long.

The first one, described in Lemma 4, works while the walk is still inside a
small ball around Xτi , see Figure 2. The radius of this ball is chosen to be
proportional to dτi . This situation is depicted in an idealized form in Figure
3. In this regime the following happens: Whenever the walk crosses for the
first time any of the wedge-shaped lines shown in Figure 3, it has a drift
away from Xk(i) towards the boundary of the lens. To see this consider the
two boundary lines of the convex hull which are emanating from Xτi+n

in
Figure 3. Suppose we are to draw in Figure 3 the line going from Xτi+n

to

the left. In the picture this line has slope 0, i.e. it is parallel to Xτi , Xk(i), but
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of course it could have a different slope. However, this slope cannot be much
smaller than 0 because Xτi+n

is close to Xτi but far away from Xk(i). On the
other hand, the line emanating from Xτi+n

to the right must have in Figure
3 a slope of at least 1. Together, these two lines create a drift downwards
and more importantly to the right towards the boundary of the lens. (If the
left line has a positive slope then the drift to the right is even stronger.)

So every time the walker crosses for the first time such a helpful wedge-
shaped line it will be pushed towards the next wedge-shaped line. If the
little ball around Xτi was infinitely large this would result in crossings of the
wedge-shaped lines at a positive rate, which would propel the walk out of
the lens very fast, i.e. this mechanism alone would give a finite exponential
moment of ∆i, see Lemma 4. However, since the ball’s size is finite and
proportional to dτi , the walk can escape from this little ball before leaving
the lense with a probability exponentially small in dτi . (This will happen a
finite number of times.)

Whenever this occurs, we rely on the second mechanism, see Lemma 5.
The line Xτi , Xk(i), which is part of the convex hull, creates a positive drift
out of the lens. Since the diameter of the lens is of order dτi it will take the
walker a time of order dτi to reach the boundary of the lens. In fact we shall
show, see Lemma 5, that it is exponentially costly for the walk to stay in
the lens for a time longer than the order of dτi . This is enough to make sure
that the walk is not slowed down too much by occasionally resisting the first
mechanism and getting lost in the lens. ¤

To make this idea precise we need to introduce more notation. The point

Yi :=
Xτi +Xk(i)

2
(i ≥ 1)

will serve as the “center” of Kτi and the “radius”

Ri,n := ‖Xτi+n − Yi‖ (i ≥ 1, n ≥ 0)

is the distance of Xτi+n from this center. The orthogonal projection of Xτi+n

onto the straight line passing through Xτi and Xk(i) will be called Zi,n (i ≥
1, n ≥ 0). The distance of Xτi+n from this line is denoted by

Di,n := ‖Xτi+n − Zi,n‖ (i ≥ 1, n ≥ 0).

For the following definitions we assume i, n ≥ 1 and τi + n < τi+1. In
particular, due to (3), we assume that at time τi + n the walk has not yet
left the lens created at time τi . This implies that Zi,n ∈ Xτi , Xk(i) and that
Xτi and Xk(i) are still boundary points of Kτi+n, as shown in Figures 2 and
4. Hence if we start in Xτi+n and follow the two boundary line segments
emanating from Xτi+n we will eventually reach Xτi and Xk(i). The boundary
line segment whose continuation leads first to Kτi and then to Xk(i) is called
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s1,i,n, while the other line segment starting in Xτi+n is denoted by s2,i,n,
see Figure 4. The angle between sj,i,n and Xτi+n, Yi is called ϕj,i,n ∈ [0, π]
(j = 1, 2), see the left part of Figure 4. Similarly, the angle between sj,i,n
and Xτi+n, Zi,n is denoted by ψj,i,n ∈ [0, π] (j = 1, 2), see the right part of
Figure 4. Occasionally, we will dropped the subscripts i and n from ϕ and
ψ. Since Kτi+n is convex,

(4) ϕ1 + ϕ2 = ψ1 + ψ2 ≤ π.

Furthermore, |ϕ1−ψ1| is one of the angles in a right angled triangle, namely
the triangle with vertices Xτi+n, Yi and Zi,n. Hence,

(5) |ϕ1 − ψ1| = |ϕ2 − ψ2| ≤ π/2.

3. Some sub- and supermartingales

The following result shows that for every i ≥ 1, both (Ri,n)n and (Di,n)n (1 ≤
n < τi+1 − τi) are submartingales.

Lemma 2. For all i, n ≥ 1, P -a.s. on {τi + n < τi+1},

E[Ri,n+1 −Ri,n | Fτi+n] ≥ sinϕ1,i,n + sinϕ2,i,n

2π
≥ sinϕ1,i,n

2π
≥ 0,(6)

E[Di,n+1 −Di,n | Fτi+n] ≥ sinψ1,i,n + sinψ2,i,n

2π
≥ sinψ1,i,n

2π
≥ 0(7)

and

(8) E[Di,n+1 −Di,n +Ri,n+1 −Ri,n | Fτi+n] ≥ c2

for some constant c2 > 0.
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Figure 5. The expected increment of Ri,n is small in the left
figure and large in the right figure. For Di,n it is the other way
round.

Figure 5 shows examples in which the expected increments of Ri,n and
Di,n are close to 0, thus explaining, why we are not able to bound in (6) and
(7) these expected increments individually away from 0. Note however, that
in both situation depicted in Figure 5, if the expected increment of Ri,n or
of Di,n is small then the expected increment of the other quantity is large.
This confirms that the expected increments of Ri,n and Di,n cannot both be
small at the same time, see (8).

Proof of Lemma 2. We fix i, n ≥ 1 and drop them as subscripts of ϕj,i,n and
ψj,i,n (j = 1, 2). Then the following statements hold on the event {τi +
n < τi+1}. Consider the angle between Yi, Xτi+n and Xτi+n, Xτi+n+1 which
includes s2,i,n. This angle is chosen uniformly at random from the interval
[ϕ2, 2π − ϕ1]. Hence we get by a change of basis argument using Yi, Xτi+n

for the first basis vector,

E[Ri,n+1 | Fτi+n]

=
1

(2π − ϕ1) − ϕ2

∫ 2π−ϕ1

ϕ2

‖(Ri,n, 0) − (cosϕ, sinϕ)‖ dϕ

≥ 1

2π − ϕ1 − ϕ2

∫ 2π−ϕ1

ϕ2

|Ri,n − cosϕ| dϕ

≥ Ri,n +
1

2π − ϕ1 − ϕ2

∫ 2π−ϕ1

ϕ2

− cosϕ dϕ

= Ri,n +
sinϕ1 + sinϕ2

2π − ϕ1 − ϕ2

≥ Ri,n +
sinϕ1 + sinϕ2

2π
,

which shows (6). Similarly, (7) follows from

E[Di,n+1 | Fτi+n] =
1

(2π − ψ1) − ψ2

∫ 2π−ψ1

ψ2

|Di,n − cosψ| dψ.

For the proof of (8) we assume without loss of generality ϕ1 ≤ π/2. Indeed,
otherwise ϕ2 ≤ π/2 because of ϕ1 + ϕ2 ≤ π, see (4), and in the following
proof one only has to replace the subscript 1 by the subscript 2 and swap
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Xτi and Xk(i). By (6) and (7),

E[Di,n+1 −Di,n +Ri,n+1 −Ri,n | Fτi+n] ≥ sinϕ1 + sinψ1

2π
.(9)

We will show that the right side of (9) is always greater than c2 := (4π2)−1.
Assume that it is less than c2. Then

(10) sinϕ1, sinψ1 ≤ (2π)−1

and hence ϕ1 ≤ (π/2) sinϕ1 ≤ 1/4 by concavity of sin on [0, π/2]. Similarly,
(10) implies that either ψ1 ≤ 1/4 or π − ψ1 ≤ 1/4. Due to |ϕ1 − ψ1| ≤ π/2,
see (5), the latter case is impossible. Therefore,

(11) |ϕ1 − ψ1| ≤ max{|ϕ1|, |ψ1|} ≤ 1/4.

The angle α ∈ [0, π/2] between Zi,n, Xτi+n and Xτi+n, Xτi is less than or
equal to ψ1. Consequently,

(12) sinψ1 ≥ sinα =
‖Xτi − Zi,n‖
‖Xτi −Xτi+n‖

≥ ‖Xτi − Yi‖ − ‖Yi − Zi,n‖
dτi

.

However, since Yi, Xτi+n ∈ Kτi+n,

(13) Ri,n = ‖Yi −Xτi+n‖ ≤ dτi+n = dτi .

Therefore,

sinψ1

(12)

≥ dτi/2

dτi
− ‖Yi − Zi,n‖

‖Yi −Xτi+n‖
=

1

2
− sin |ϕ1 − ψ1|

(11)

≥ 1

2
− 1

4
=

1

4
,

which contradicts (10). ¤

We fix the constants

(14) β := 1 + 4π
√

8 > 30 and γ :=
1

2β
<

1

60
.

Whenever τi <∞ we denote the first exit time after τi from B(Xτi , γdτi) by

γi+1 := inf{n > τi : ‖Xn −Xτi‖ > γdτi} (≤ ∞),

see Figure 2. If i ≥ 1 and n ≥ 0 then we shall call n good for i if n = 0 or if

(15) τi + n < τi+1 ∧ γi+1 and E[Ri,n+1 −Ri,n | Fτi+n] ≥
1

π
√

8
P -a.s..

This means, n ≥ 1 is good for i if at time τi + n the walker has not yet left
the intersection of the small ball around Xτi and the lens shown in Figure 2
and, roughly speaking, feels a substantial centrifugal force pushing it away
from the center Yi. Good times help the walker to leave the lens shortly after
τi and closely to the point Xτi .

Next we introduce an Azuma type inequality for a certain family of su-
permartingales, which will help make this idea more precise.
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Lemma 3. There are constants c3 > 0, c4 > 0 and 1 ≤ c5 < ∞ such that

P -a.s. for all i ≥ 1, n ≥ 0,

E [Mi,n | Fτi ] ≤ c5 exp(−c4n),

where

Mi,n := 1{τi + n < τi+1} exp

(
c3

n∑

m=1

Wi,m

)
and

Wi,m := Di,m−1 −Di,m + β(Ri,m−1 −Ri,m) + 41{m− 1 is good for i}.
Proof. Fix i ≥ 1. Firstly, we shall prove that for suitable c4 > 0,

(16) E [Mi,n+1 | Fτi+n] ≤ exp(−c4)Mi,n P -a.s. for all n ≥ 1,

thus showing that (Mi,n)n≥1 is an exponentially fast decreasing submartin-
gale. Since Wi,m is Fτi+m-measurable (m ≥ 1), we have

E [Mi,n+1 | Fτi+n] = Mi,n E[exp(c3Wi,n+1), τi + n+ 1 < τi+1 | Fτi+n]

≤ Mi,n E[exp(c3Wi,n+1) | Fτi+n].

Therefore is suffices to show for the proof of (16) that on the event {τi+n <
τi+1}, E[exp(c3Wi,n+1) | Fτi+n] < 1 for some suitable c3 > 0. However, since
the Wi,m’s (m ≥ 1) are uniformly bounded by a constant this follows from
the fact that on the event {τi + n < τi+1},
E [Wi,n+1 | Fτi+n] = E[Di,n −Di,n+1 +Ri,n −Ri,n+1 | Fτi+n]

+ 4
(
π
√

8E[Ri,n −Ri,n+1 | Fτi+n] + 1{n is good for i}
)

≤ −c2 < 0

P -a.s. by virtue of definition (15) and Lemma 2 (6), (8). Using (16) for
induction over n we obtain by the tower property,

E [Mi,n | Fτi ] ≤ exp(−c4(n− 1))E [Mi,1 | Fτi ] P -a.s.

for all n ≥ 1. Since Mi,1 is bounded by a constant this finishes the proof. ¤

4. Exponential moments of τi+1 − τi.

The next two lemmas provide tools needed to bound in Proposition 6 the
times ∆i during which the diameter does not increase. The first lemma shows
that the walk cannot spend too much time inside the lens and the small ball
around Xτi shown in Figure 2.

Lemma 4. For all i ≥ 1, n ≥ 0, P -a.s.

P [τi + n < τi+1 ∧ γi+1 | Fτi ] ≤ c5 exp(−c4n),

where c4 and c5 are as in Lemma 3.

The second lemma gives a first crude upper bound for ∆i.
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Lemma 5. There is a finite constant c6 such that for all i ≥ 1, n ≥ 0, P -a.s.

P [∆i > n | Fτi ] ≤ c5 exp(c4(c6dτi − n)),

where c4 and c5 are as in Lemma 3.

In the proof of both lemmas we will use the fact that the sum in the
definition of Mi,n is in part telescopic, i.e.

(17)
n∑

m=1

Wi,m = −Di,n + β(Ri,0 −Ri,n) + 4
n∑

m=1

1{m− 1 is good for i}

since Di,0 = 0.

Proof of Lemma 4. For n = 0 the statement is true since c5 ≥ 1. Fix n ≥ 1.
The statement follows from Lemma 3 and (17) once we have shown that on
the event {τi + n < τi+1 ∧ γi+1}, the right hand side of (17) is nonnegative.
First we will show that on {τi + n < τi+1 ∧ γi+1},
(18) Di,n + β(Ri,n −Ri,0) ≤ 2(Di,n − ‖Xτi − Zi,n‖).
This is done by brute force. For abbreviation we set d := dτi , y := Di,n

and x := ‖Xτi − Zi,n‖ and note that on {τi + n < τi+1 ∧ γi+1} we have
x, y ∈ [0, γd]. Observe that x and y play the role of cartesian coordinates of

Xτi+n, see Figure 6. Using Ri,0 = d/2 and Ri,n =
√

(d/2 − x)2 + y2 we see
that (18) is equivalent to

β
√

(d/2 − x)2 + y2 ≤ y − 2x+ βd/2.

Both sides of this inequality are nonnegative since x is less than γd, which
is tiny compared to βd. Taking the square and rearranging shows that (18)
is equivalent to

(19) x(4x− 4y − 2βd− β2x+ β2d) + y(y + βd− β2y) ≥ 0.

Since x, y ∈ [0, γd] and βγ = 1/2, see (14), the terms β2d in the first bracket
and βd in the second bracket are the dominant terms, respectively, which
shows that (19) and thus (18) holds. For the proof that the right hand side
of (17) is indeed nonnegative on {τi +n < τi+1 ∧ γi+1} it therefore suffices to
show that,

(20) Di,n − ‖Xτi − Zi,n‖ ≤ 2
n−1∑

j=0

1{j is good for i}.

Both Di,j and −‖Xτi − Zi,j‖ can increase by at most 1 if j increases by 1.
Therefore, the left hand side of (20) is less than or equal to 2(#Ji,n) where

Ji,n := {0 ≤ j < n | ∀0 ≤ m < j : Di,m−‖Xτi −Zi,m‖ ≤ Di,j−‖Xτi −Zi,j‖}.
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Figure 6. More realistic and detailed than Figure 3. The
darkly shaded convex hull Kτi at time τi has been enlarged
after three steps by the lightly shaded part. j = 3 is good
for i since it satisfies the sufficient criterion ψ1,i,3 ≤ π/4, see
(22), which corresponds to the fact that the dashed line, which
intersects the horizontal axis at an angle of π/4, does not inter-
sect Ko

τi+3. j = 1 is also good for i for the same reason, while
j = 2 might be good for i but fails to satisfy the sufficient
condition (22), since the corresponding dashed line starting in
Xτi+2 would have intersected Ko

τi+2.

Hence it suffices to show that the elements of Ji,n are good for i. Note that
j = 0 ∈ Ji,n is good for i by definition of being good. So fix 1 ≤ j ∈ Ji,n. By
Lemma 2 (6) it is enough to show that sinϕ1,i,j ≥ 2−1/2, that is

(21) ϕ1,i,j ∈ [π/4, 3π/4].

On the one hand, ϕ1 − ψ1 is close to π/2, as can be seen in Figure 6. More
precisely,

sin(ϕ1 − ψ1) =
‖Yi − Zi,j‖
‖Yi −Xτi+j‖

≥ ‖Yi −Xτi‖ − ‖Xτi − Zi,j‖
‖Yi −Xτi‖ + ‖Xτi −Xτi+j‖

≥ dτi/2 − γdτi
dτi/2 + γdτi

=
1 − 2γ

1 + 2γ
≥ 1√

2
= sin

π

4
.

Since 0 ≤ ψ1 ≤ ϕ1 this implies ϕ1 ≥ π/4, thus proving the first part of (21).
On the other hand, ϕ1 − ψ1 ≤ π/2, see (5). Hence all that remains to be
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shown for the completion of the proof of (21) is that

(22) ψ1,i,j ≤ π/4.

Consider the half line (dashed in Figure 6) starting atXτi+j which includes an
angle of π/4 with Xτi+j, Zi,j that contains s1,i,j . We claim that this line does
not intersect Ko

τi+j
. This would imply (22). To prove this claim observe that

for any c > 0 the set of possible values for Xτi+m with Di,m−‖Xτi−Zi,m‖ = c
is a line parallel to the half line just described. Since j ∈ Ji,n the walker
did not cross between time τi and time τi + j − 1 the dashed line passing
through Xτi+j. Consequently, it suffices to show that the dashed line does
not intersect Ko

τi
. If it did intersect Ko

τi
then this would force the walker on

its way from Xτi to Xτi+j to cross the dashed line strictly before time τi + j,
which is impossible as we just saw. ¤

Proof of Lemma 5. Again, the statement is true for n = 0 since c5 ≥ 1. For
n ≥ 1, by the Pythagorean theorem and (13), Di,n ≤ Ri,n ≤ dτi on the event
{τi + n < τi+1}. Thus on this event the right hand side of (17) is greater
than or equal to −dτi + β(0 − dτi) + 0. Hence due to Lemma 3 and (17),
P -a.s. for all n ≥ 1,

exp(−c3(1 + β)dτi)P [τi + n < τi+1 | Fτi ] ≤ c5 exp(−c4n),

which is equivalent to the claim of the lemma with c6 := c3(1 + β)/c4. ¤

The following result is stronger than Lemma 5.

Proposition 6. τi < ∞ P -a.s. for all i ≥ 0. Moreover, there are positive

constants c7, c8 and finite constants c9 and c10 ≥ 1 such that for all i ≥ 0
and n ≥ 0, P -a.s.,

P [∆i ≥ n | Fτi ] ≤ c9 exp(−c7n) and(23)

E [exp(c8∆i) | Fτi ] ≤ c10.(24)

Proof. (24) is an immediate consequence of (23). For the proof of (23) choose

(25) c7 :=
γc4
c6 + γ

and c9 := c5e
c4

with c4, c5 and c6 according to Lemma 5. We only need to show that (23)
holds for all i ≥ 1 with τi < ∞. Indeed, the case i = 0 is trivial since
τ0 = 0, τ1 = 1 and hence ∆0 = 1. Moreover, since (23) implies ∆i < ∞
P -a.s., we then have τi = ∆0 + . . .+ ∆i−1 <∞ as well.

Fix i ≥ 1 and n ≥ 0. We distinguish three cases:

{n < γdτi}, {γdτi ≤ n < (c6 + γ)dτi} and {(c6 + γ)dτi ≤ n}.
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Note that these events are elements of Fτi and partition Ω. By definition of
γi+1,

(26) γi+1 ≥ τi + dγdτie
since the walker takes steps of length one. Therefore, on {n < γdτi},

P [∆i > n | Fτi ]
(26)
= P [τi + n < τi+1 ∧ γi+1 | Fτi ]

Lemma 4

≤ c5 exp(−c4n)
(25)

≤ c9 exp(−c7n).

On {γdτi ≤ n < (c6 + γ)dτi},
P [∆i > n | Fτi ]

≤ P [τi + dγdτie < τi+1 | Fτi ]
(26)

≤ P [τi + dγdτie − 1 < τi+1 ∧ γi+1 | Fτi ]

Lemma 4

≤ c5 exp(−c4(γddτie − 1))
(25)

≤ c9 exp(−c7n).

Finally, on {(c6 + γ)dτi ≤ n},

P [∆i > n | Fτi ]
Lemma 5

≤ c5 exp(c4(c6dτi − n))
(25)

≤ c9 exp(−c7n),

where the last inequality can easily be checked. ¤

5. Linear growth of the diameter and proof of Theorem 1

The following result (with m = 0) implies that (dn)n has a positive lim inf
speed.

Lemma 7. There are constants c11 > 0 and c12 < ∞ such that for all

0 ≤ m ≤ n,

E[exp(dm − dn)] ≤ c12(n+ 1) exp(c11(m− n)).

For the proof of this lemma and of Theorem 1 we need the following
definition: Given n ≥ 0 let in := sup{i ≥ 0 | τi ≤ n}. Note that

(27) dτin = dn and in ≤ τin ≤ n < τin+1 .

Proof of Lemma 7. The case n = m is trivial. So let 0 ≤ m < n and set

(28) f(m,n) :=
n−m

2n
> 0 and g(m,n) :=

c8f(m,n)

2 ln c10
> 0,

where c8 and c10 are according to Proposition 6. A simple union bound yields

E[edm−dn ] ≤ I + II + III, where

I := P [τim+1 −m ≥ f(m,n)n],

II := P [τim+1 −m < f(m,n)n, in < im + dg(m,n)ne] and

III := E [exp (dm − dn) , in ≥ im + dg(m,n)ne] ,
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∆im ∆in

nτin
τi +1ni  +1mτim

τ

Figure 7.

see also Figure 7. Here term I corresponds to the situation in which after
time m the diameter does not increase for an untypical long while. Term II
handles the case in which the diameter does increase shortly after time m,
as it should, but not often enough in the remaining time until n. The third
term III considers the original random variable on the typical event that the
number of times at which the diameter increases is at least proportional to
n with a constant of proportionality not too small.

It suffices to show that each of these three terms decays as n→ ∞ in the
way claimed in Lemma 7 with constants c11 and c12 independent of n and
m. As for the first term,

I ≤ P [∆im ≥ df(m,n)ne] (27)
=

m∑

i=0

P [im = i, ∆i ≥ df(m,n)ne]

(23)

≤ c9(m+ 1)e−c7df(m,n)ne ≤ c9(n+ 1)ec7(m−n)/2,

which is an upper bound like the one requested in Lemma 7. The second
term is estimated as follows.

II
(27)
= P

[
τim+1 < m+ f(m,n)n, n < τin+1 ≤ τim+dg(m,n)ne

]

(28)

≤ P
[
τim+dg(m,n)ne − τim+1 ≥ n−m− f(m,n)n = f(m,n)n

]

≤ E
[
exp

(
c8
(
τim+dg(m,n)ne − τim+1 − f(m,n)n

))]

= e−c8f(m,n)n
∑

k≥1

E
[
exp

(
c8
(
τk+dg(m,n)ne−1 − τk

))
, im + 1 = k

]

= e−c8f(m,n)n
∑

k≥1

E




dg(m,n)ne−2∏

i=0

exp (c8∆k+i) , im + 1 = k


 .(29)

Note that {im + 1 = k} is the event that τk is the first time after time m at
which the diameter increases. Therefore,

(30) {im + 1 = k} ∈ Fτk .

Moreover, the increments ∆k+i are measurable with respect to Fτk+i+1
. Con-

sequently, by conditioning in (29) on Fτk+dg(m,n)ne−2
and applying Proposition
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Figure 8. The event Ai occurs if the first trial point sampled
lies on the bold arc.

6 (24) with i = k + dg(m,n)ne − 2 we conclude

II ≤ e−c8f(m,n)nc10
∑

k≥1

E




dg(m,n)ne−3∏

i=0

exp (c8 (∆k+i)) , im + 1 = k


 .

Continuing in this way we obtain by induction after dg(m,n)ne − 1 steps,

II ≤ e−c8f(m,n)nc
dg(m,n)ne−1
10 ≤ e−c8f(m,n)nc

g(m,n)n
10

(28)
= e(c8/4)(m−n),

which is again of the form required in Lemma 7.
In order demonstrate that also the third term III behaves properly we will

show that the increments dτi+1
−dτi , i ≥ 1, have a uniformly positive chance of

being larger than a fixed constant, say 1/2, independently of the past. To this
end, we may assume that the process (Xn)n is generated in the following way:
There are i.i.d. random variables Un,k, n ≥ 0, k ≥ 0, uniformly distributed
on the unit circle centered in 0 such that Xn+1 = Xn + Un,k, where k is the
smallest integer such that Xn, Xn + Un,k does not intersect Kn. Then for
any i ≥ 1, by definition of τi,

{dτi+1
≥ dτi + 1/2} ⊇ {dτi+1 ≥ dτi + 1/2}

⊇
{
Uτi,0 ·

Xτi −Xk(i)

dτi
≥ 1

2

}
=: Ai.(31)

The reason for inclusion (31) is illustrated in Figure 8: If Ai occurs then Kτi

and Xτi + Uτi,0 are separated by a slab of width 1/2. In particular, the line
connecting Xτi and Xτi + Uτi,0 does not intersect Kτi . Hence τi+1 = τi + 1
and Xτi+1

= Xτi+1 = Xτi + Uτi,0. Therefore,

dτi+1 ≥ ‖Xτi+1 −Xk(i)‖ ≥ ‖Xτi −Xk(i)‖ + 1/2 = dτi + 1/2.
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It follows from (31) that for all 1 ≤ j1 ≤ j2,

dτj2 − dτj1 ≥ 1

2

j2−1∑

i=j1

1{dτi+1
≥ dτi + 1/2} ≥ 1

2

j2−1∑

i=j1

1{Ai}.(32)

This estimate will be useful since the random variables

(33) 1{Ai} (i ≥ 1) are i.i.d. with P [Ai] > 0.

Indeed, let F̃n (n ≥ 0) be the σ-field generated by Um,k, 0 ≤ m < n, 0 ≤ k.

Because of Fn ⊆ F̃n we have Aj ∈ F̃τi for all 1 ≤ j < i. Moreover, since the
uniform distribution on the unit circle is invariant under rotations,

(34) Ai is independent of F̃τi (i ≥ 1)

and P [Ai | F̃τi ] = P [Ai] is just the length of the bold circle segment shown
in Figure 8 divided by 2π. This implies (33). Now we estimate III by

III
(27)
= E

[
exp

(
dτim − dτin

)
, in ≥ im + dg(m,n)ne

]

≤ E
[
exp

(
dτim+1

− dτin
)
, in ≥ (im + 1) + dg(m,n)ne − 1

]

≤
∑

k≥1

E
[
exp

(
dτk − dτk+dg(m,n)ne−1

)
, im + 1 = k

]

(32)

≤
∑

k≥1

E


exp


−1

2

k+dg(m,n)ne−2∑

i=k

1{Ai}


 , im + 1 = k


 .(35)

As seen in (30), {im + 1 = k} ∈ Fτk ⊆ F̃τk . Therefore, after conditioning in
(35) on Fτk , we see with the help of (34) for i ≥ k and (33) that the right
hand side of (35) equals

E

[
exp

(
−1

2
A1

)]dg(m,n)ne−1

,

which decays as required in Lemma 7, see (28). ¤

Lemma 7 directly implies a weaker version of Theorem 1 in which ‖Xn‖
is replaced by dn. For the full statement we need the following additional
argument.

Proof of Theorem 1. (2) follows from (1) by the Borel-Cantelli lemma. For
the proof of (1) pick c11 and c12 according to Lemma 7 and choose c13 > 0
and c1 > 0 small enough such that

(36) 2c13 − c11 < 0 and 2c1 − c11(c13 − c1) < 0.
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We denote by Mn := max{‖Xm‖ | m ≤ n} the walker’s maximal distance
from the origin by time n. Note that Mn and dn are related via

(37) Mn ≤ dn ≤ 2Mn for all n ≥ 0

because of X0 = 0. By a union bound for any n ≥ 0,

P [‖Xn‖ ≤ c1n] ≤ P [∆in ≥ c1n] + P [Mn ≤ c13n] + P [Bn], where(38)

Bn := {∆in < c1n, Mn > c13n, ‖Xn‖ ≤ c1n}.
It suffices to show that each one of the three terms on the right hand side of
(38) decays exponentially fast in n. As for the first term,

P [∆in ≥ c1n]
(27)
=

n∑

i=0

P [in = i,∆i ≥ dc1ne]
(23)

≤ c9(n+ 1)e−c7c1n,

which decays exponentially fast in n indeed. So does the second term in (38)
since by Chebyshev’s inequality,

P [Mn ≤ c13n]
(37)

≤ P [dn ≤ 2c13n] ≤ e2c13nE[e−dn ]
Lemma 7

≤ c12(n+1)e(2c13−c11)n,

which decays exponentially fast due to the choice of c13 in (36). Finally, we
are going to bound the third term in (38), P [Bn]. Define the ladder times
(µj)j of the process (Mn)n≥0 recursively by

µ0 := 0 and µj+1 := inf{n > µj | Mn > Mµj
}.

In analogy to (in)n for (τi)i we define for (µj)j the increasing sequence (jn)n
by jn := sup{j ≥ 0 | µj ≤ n} and note that µjn ≤ n < µjn+1 and Mn =
‖Xµjn

‖. Hence on the event Bn,

‖Xµjn
−Xn‖ ≥ ‖Xµjn

‖ − ‖Xn‖ = Mn − ‖Xn‖ ≥ (c13 − c1)n.

Since the walker takes steps of length one, this implies n− µjn ≥ (c13 − c1)n
and therefore, on the event Bn,

(39) µjn ≤ b(1 − c13 + c1)nc.
On the other hand, on Bn,

dn
(27)
= dτin = ‖Xτin

−Xk(in)‖ ≤ ‖Xn‖ + ‖Xn −Xτin
‖ + ‖Xk(in)‖

≤ c1n+ ∆in +Mn,(40)

where we used again the fact that the steps have length one to estimate the
second term and k(in) ≤ in ≤ n to bound the third term. Therefore (40)
can be estimated on Bn from above by

c1n+ c1n+Mµjn

(37)

≤ 2c1n+ dµjn

(39)

≤ 2c1n+ db(1−c13+c1)nc.
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Consequently, by Chebyshev’s inequality and Lemma 7,

P [Bn] ≤ P [dn − db(1−c13+c1)nc ≤ 2c1n] ≤ c12(n+ 1)e(2c1−c11(c13−c1))n,

which decays exponentially in n due to the choice of c13 and c1 in (36). ¤
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