
INTEGRABILITY OF INFINITE WEIGHTED SUMS OF
HEAVY-TAILED I.I.D. RANDOM VARIABLES

Abstract. We consider the sum X of i.i.d. random variables
Yn, n ≥ 0, with weights an which decay exponentially fast to
zero. For a smooth sublinear increasing function g, g(|Y0|) has
finite expectation if and only if the expectation of |X|g′(|X|) is
finite. The proof uses characteristic functions. However, if g grows
polynomially or exponentially fast, then the expectation of g(|Y0|)
is finite if and only if the expectation of g(|X|) is finite.

By Martin P. W. Zerner1

1. Introduction and results

Let Yn, n ≥ 0, be a sequence of i.i.d. real valued random variables
on some probability space with probability measure P and expectation
operator E and let an ∈ R, n ≥ 0, such that

(1) X :=
∑

n≥0

anYn

is well-defined as a P -almost surely absolutely convergent series.
We are interested in the tail of the distribution of X. The distri-

bution of X is of interest because the marginal distribution of any
stationary linear process

Xm =
∞∑

n=−∞

anYm−n (m ∈ Z)

for two-sided sequences (an)n and (Yn)n can be represented as the dis-
tribution of some X of the form (1). Linear processes, however, are
basic in classical time series analysis. For example, every stationary
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causal ARMA process is linear with weights an which decay exponen-
tially fast to zero, see e.g. Brockwell and Davis [3, Sections 3.1 and
13.3] and Embrechts, Klüppelberg and Mikosch [5, Section 7.1].
The purpose of the present paper is to investigate how the tails of

|Y0| and |X| are related to each other. More precisely, we ask how inte-
grability of |X| under some positive increasing function f corresponds
to integrability of |Y0| under some other function g. In general, one
expects the tail of X to be at least as heavy as the one of the Yn’s.
For example, if all anYn are P -a.s. nonnegative and a0 = 1 then clearly
X ≥ Y0 almost surely. The question is whether the tail of X can be
really heavier than the one of Y0 in the sense that there is some positive
increasing function g for which g(|Y0|) has a finite expectation but not
g(|X|).
If X was the sum of only a finite number of independent random

variables then this cannot happen for functions g which grow expo-
nentially, polynomially or logarithmically: A finite sum of independent
random variables has a finite expectation under one of these functions
if and only if the same function of each of the summands has a finite
expectation. (Cf. Lemma 4 and the proof of Proposition 1. This is
false for superexponential functions, see Remark 2 below.)
However, the situation is different, if one considers infinite sums X

as defined in (1). Roughly speaking, integrability of |Y0| is equivalent
to integrability of |X| only in the case of exponential and polynomial
functions, but not for logarithmic functions. The first part of this
statement is made precise in the following proposition.

Proposition 1. (Polynomial and exponential functions) Assume
that X in (1) is well-defined as an almost surely absolutely convergent
series and let

∑
n≥0 |an| < ∞ with |an| ≤ 1 for all n. Then

(2) E[f(|X|)] < ∞ if and only if E[f(|Y0|)] < ∞,

provided one of the following two cases holds:

a) f(t) = h(t)tp, where p > 0 and h ∈ C([0,∞), [0,∞)) is concave
increasing with h(t) = O(tp) as t → ∞.

b) f(t) = tp exp(ct) with c ≥ 0, p ≥ 0 and |a0| = 1.

In both cases a) and b) we additionally assume
∑

n≥0 |an|
p < ∞ if

0 < p < 1.

For f(t) = tp with p > 0 this has been observed before by Vervaat
[11, Theorem 5.1] in a more general context and Elton and Yan [4,
Proposition 7 (ii)].
For smooth subpolynomial functions g, like logarithms, and exponen-

tially decaying weights an we have a different picture. Here integrability
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of g(|Y0|) is not enough to ensure integrability of g(|X|). Instead it is
equivalent to integrability of f(|X|) for a function f which in general
grows slower than g. This is the content of our following main result.

Theorem 2. (Sublinear functions) Assume that (|an|)n≥0 decays
exponentially in the sense that

(3) −∞ < lim inf
n→∞

log |an|

n
≤ lim sup

n→∞

log |an|

n
< 0

and let

(4) E[log+ |Y0|] < ∞.

Then X converges absolutely almost surely. Moreover,

(5) E [f(|X|)] < ∞ if and only if E [g(|Y0|)] < ∞,

provided there are T > 0 and 0 < α < 1 such that f, g ∈ C([0,∞[, [0,∞[)
are increasing on [0,∞[ and continuously differentiable on ]T,∞[ with

t 7→ f(t)/tα decreasing on ]T,∞[ and(6)

f(t) = tg′(t) for t > T .(7)

Remarks. 1. There is some overlap between Proposition 1 a) and
Theorem 2. Some functions f which grow polynomially fast but not
faster than linear are covered by both results.
2. Relation (2) does not need to hold if f grows faster than expo-

nential, not even if X = Y0 + Y1 is the sum of only two i.i.d. random
variables Y0 and Y1. For instance, let exp(exp(Y0)) have a finite first
but infinite second moment and let P [Y1 ≥ ln 2] > 0. Then

E[exp(exp(X))] ≥ E[(exp(exp(Y0)))
2]P [Y1 ≥ ln 2] = ∞.

This raises the question if there is a statement similar to Proposition
1 and Theorem 2 for superexponential functions.
3. Assumption (6) is essential since Proposition 1 b) shows that the

statement of Theorem 2 does not hold in the case of exponential func-
tions. For instance, let g(t) = exp(t), f(t) = t exp(t) and let Y0 have
the properties E[g(|Y0|)] < ∞ and E[f(|Y0|)] = ∞. Then, according
to (2), also E[f(|X|)] = ∞, thus violating (5).
4. Since due to assumption (6), Theorem 2 does not cover functions

growing at least linearly, Theorem 2 is meaningless if |Y0| has a finite
expectation because in this case both expectations in (5) are a priori
finite for all f under consideration. However, Theorem 2 does provide
interesting information if Y0 is heavy-tailed in the sense that E[|Y0|

α] =
∞ for some or even all 0 < α < 1.
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To the best of our knowledge, there are only few results in the litera-
ture which correlate the tail behavior of |Y0| and |X| in the case where
all the moments of order α > 0 are infinite. Elton and Yan [4, Propo-
sition 7 (i)] show that E[(log+ |Y0|)

2] < ∞ implies E[log+ log+ |X|] <
∞. This statement is improved by Theorem 2, which implies that
E[(log+ |Y0|)

2] < ∞ is in fact equivalent to E[log+ |X|] < ∞ and that
E[log+ log+ |X|] < ∞ is equivalent to E[log+ |Y0| log

+ log+ |Y0|] < ∞.
Our proof of Theorem 2 relies on the approach used by Elton and Yan
[4].
5. An alternative and much more popular way to describe the re-

lation of the tails of Y0 and X is to compare asymptotic formulas for
P [|Y0| > t] and P [|X| > t] as t → ∞. For a summary of results in this
direction see e.g. Embrechts, Klüppelberg and Mikosch [5, Appendix
3.3], Goldie [6, Section 4] and more recently Mikosch and Samorod-
nitsky [9]. Integrability as we used it and tail behavior are connected
through the formula

(8) E[h(Z)] =

∫ ∞

0

P
[
Z > h−1(t)

]
dt

for nonnegative random variables Z and increasing positive functions
h. For instance, in [5, Appendix 3.3] two classes of distributions of Y0

are considered which have a finite α-moment for some α > 0 and for
which the tails of X and Y0 are essentially the same up to a constant c
in the sense that P [Y0 > t] ∼ cP [X > t]. For these two classes relation
(2) follows from relation (8).

Let us now describe how the remainder of the present paper is or-
ganized. In the next section we provide examples for Theorem 2 and
describe integrability for sums of two random variables as far as we
need it in the sequel. In Section 3 we prove Proposition 1. Sections 4
to 6 are devoted to the proof of Theorem 2. In Section 4 we introduce
characteristic functions and provide the tools for translating the state-
ment of Theorem 2 into a statement about characteristic functions.
Section 5 proves Theorem 2 in the special case where an = an for some
0 < |a| < 1. This is used in the last section to derive Theorem 2 in the
general case.

2. Sublinear Examples and Preliminaries

Some examples of functions f and g satisfying the assumptions of
Theorem 2 are given in Table 1. We list only the leading order functions
f̃ and g̃, that is we omit constant coefficients and lower order additive
functions because they do not matter in (5). The definitions of f̃ and
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g̃(t) f̃(t) parameters

tβ(log t)γ g̃(t) 0 < β, 0 ≤ γ

tβ/(log log t)
γ g̃(t)

(log log t)γ
0 < β, 0 < γ

exp (β(log t)γ)
g̃(t)

(log t)1−γ
0 < β, 0 < γ < 1

exp (β(log log t)γ)
g̃(t)(log log t)γ−1

log t
0 < β, 1 < γ

(log t)β(log log t)γ
g̃(t)

log t
1 ≤ β, 0 ≤ γ

Table 1. Pairs of f̃ and g̃ (valid only for t large) for

which E[f̃ [|X|]] < ∞ if and only if E[g̃[|Y0|]] < ∞.

g̃ are only valid for t large enough. The examples are ordered from fast
increasing functions to slowly increasing ones.
Observe in Table 1 that the slower g̃ increases, the more deviates

the corresponding f̃ from g̃. The extent to which this may happen is
described in the following result.

Proposition 3. For any f, g, T and α satisfying the assumptions of
Theorem 2 there is some c1 ∈ R with

(9) f(t)− c1 ≤ g(t) ≤ f(t) log(t) + c1 for t > T .

In the proof and the rest of the paper we will use the observation
that assumption (6) is equivalent to

(10) tf ′(t) ≤ αf(t) for all t > T ,

which follows from differentiating the decreasing function f(t)t−α.



6 INTEGRABILITY OF SUMS OF RANDOM VARIABLES

Proof of Proposition 3. The lower bound follows from (7) and (10) by

g(t) = g(T ) +

∫ t

T

f(s)

s
ds(11)

≥ g(T ) +

∫ t

T

sf ′(s)

s
ds = g(T ) + f(t)− f(T ).

For the upper bound we partially integrate (11) to get

g(t) = g(T ) + f(t) log t− f(T ) log T −

∫ t

T

f ′(s) log s ds

and observe that f ′(s) log s is non-negative for s ≥ 1 ∨ T since f is
increasing. �

The first and the last group in Table 1 provide examples which show
that the bounds given in (9) are sharp: In the first example f̃ = g̃

whereas we lose a factor of log t in the last example when deriving f̃
from g̃. An intermediate behavior is exhibited by the other families.
For γ > 0 in the first or the last group we get examples of a product

g̃ of two functions which show that in general the dominant factor
determines how f̃ is obtained from g̃.
The following lemma is needed at various places in the proofs of

Proposition 1 and Theorem 2.

Lemma 4. (Finite sums) Let Z1, Z2 be random variables on some
probability space (Ω,A,P) and let f1 and f2 satisfy the assumptions
for f of Proposition 1 and Theorem 2 (except (7)), respectively. Then
E[f2(|Zi|)] < ∞ for i = 1, 2 implies E[f2(|Z1+Z2|)] < ∞. Moreover, if
0 < c < ∞ then E[f2(|Z1|)] < ∞ if and only if E[f2(c|Z1|)] < ∞. If Z1

and Z2 are additionally independent then for j = 1, 2, E[fj(|Z1+Z2|)] <
∞ implies E[fj(|Zi|)] < ∞ for i = 1, 2.

Proof. For the first statement observe that t 7→ f2(t)/t is decreasing for
t > T thanks to (6). Therefore, f2(x+y)/(x+y) ≤ f2(x)/x, f2(y)/y for
x, y > T , which implies the triangle inequality f2(x+y) ≤ f2(x)+f2(y)
for x, y ≥ T . Hence, since f2 is monotone,

E[f2(|Z1 + Z2|)] ≤ E[f2(|Z1| ∨ T )] + E[f2(|Z2| ∨ T )].

This proves the first statement. The second claim of the lemma follows
from the monotonicity of f2 and from iterated application of the first
statement. For the last assertion, we get from the monotonicity of fj
that for any γ > 0,

∞ > E [fj(|Z1 + Z2|)] ≥ E
[
fj (||Z1| − |Z2||) 1|Z2|≤γ≤|Z1|

]

≥ E
[
fj (||Z1| − γ|) 1γ≤|Z1|

]
P[|Z2| ≤ γ],
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where we used independence in the last step. Therefore E[fj(||Z1| −
γ|)] < ∞ for some large γ. In the case j = 2, we apply the first
part of the proof to Z1 and Z2 replaced by Z̃1 := |Z1| − γ and Z̃2 := γ
respectively, to see that also E[f2(|Z1|)] < ∞ as required. By symmetry
the same holds for Z2. For j = 1 we observe that there is some c2 > 0
such that f1(x− γ) ≥ c2f1(x) for x large, which gives E[f1(|Z1|)] < ∞
and analogously E[f1(|Z2|)] < ∞. �

3. Polynomial and exponential functions

Proof of Proposition 1. The only-if-part of (2) follows from the last
statement of Lemma 4 with j = 1, i = 1, Z1 = a0Y0 and Z2 = X − Z1.
Note that we used here concavity in part a) and |a0| = 1 in part b).
For the if-part, we may assume without loss of generality that an ≥ 0

and Yn ≥ 0 P -a.s. because f is increasing and |X| ≤
∑

n |an||Yn| which
is P -a.s. finite due to the assumption of absolute convergence. We first
settle the case f(t) = exp(ct). In this case, due to independence,

logE[f(X)] =
∑

n≥0

log (1 + E[exp(canYn)− 1])

≤
∑

n≥0

E[exp(canY0)− 1] =
∑

m≥1

E

[
(cY0)

m

m!

]∑

n≥0

amn .

Since the an are not larger than 1 and summable with a finite total sum,
say c3, the above is less than c3E[f(Y0)] which is finite by assumption.
The functions f which remain to be considered are of the form f(t) =

tps(t) with p > 0 and some increasing positive function s. For p ≥ 1
by monotone convergence and Minkowski’s inequality,

E[f(X)]1/p = lim
k→∞

∥∥∥∥∥

k∑

n=0

anYn (s (X))1/p

∥∥∥∥∥
p

≤ lim
k→∞

k∑

n=0

anE [Y p
n s(X)]1/p ,(12)

where ‖ · ‖p is the Lp-norm. Now let (Ỹn)n be an independent copy of

(Yn)n and set Xn := anỸn +
∑

m 6=n amYm for n ≥ 0. Note that Yn and

Xn are independent. Then by monotonicity of s and an ≤ 1, (12) is
less than

lim
k→∞

k∑

n=0

anE [Y p
n s(Yn +Xn)]

1/p = c3E [Y p
0 s(Y0 +X0)]

1/p .
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If however 0 < p < 1, then if follows directly from the concavity of tp

that

E[f(X)] ≤
∑

n≥0

apnE[Y p
n s(X)] ≤ E[Y p

0 s(Y0 +X0)]
∑

n≥0

apn.

Thus in either case, p ≥ 1 or p < 1, it remains to show that

(13) E[Y p
0 s(Y0 +X0)]

is finite.
In the case s(t) = exp(ct), (13) equals E[f(Y0)]E[exp(cX)]. The first

factor is finite by assumption and the second one is finite due to the
previously considered case f(t) = exp(ct).
In the case s = h, we assume without loss of generality h(0) = 0

which implies h(x+y) ≤ h(x)+h(y) for all x, y ≥ 0. Moreover we may
assume that h does not vanish identically. Therefore the assumption
E[f(Y0)] < ∞ implies E[Y p

0 ] < ∞. By independence of Y0 and X0,
(13) can be estimated from above by

(14) E [Y p
0 h(Y0)] + E[Y p

0 ]E[h(X0)] ≤ E [f(Y0)] + c4E[Y p
0 ]E[Xp]

for some finite c4 where we used h(t) = O(tp). For h ≡ 1, the left hand
side of (14) is finite if E[Y p

0 ] < ∞. Thus for h ≡ 1 the above calculation
up to the left side of (14), inclusive, reproduces the known result that
E[Xp] < ∞ if E[Y p

0 ] < ∞. Consequently, also for the original f and
h, the right hand side of (14) is finite, if E[f(Y0)] < ∞, thus proving
finiteness of E[f(X)]. �

4. Integrability and characteristic functions

For a probability measure σ on R we denote its characteristic func-
tion by σ̂(t) =

∫
exp(itx) dσ(x) (t ∈ R). The following lemma, which

may be of independent interest, relates the local behavior of σ̂ at 0 to
integrability under σ.

Lemma 5. Let σ be a probability measure on R, let 0 < θ < 1 and let
T, α and f satisfy the assumptions of Theorem 2 (except (7)). Then
the following two assertions are equivalent.

∫
f(|x|) dσ(x) < ∞.(15)

∫ 1/T

0

f ′(1/t)

t2

∫ 1

0

|1− σ̂(θyt)| dy dt < ∞.(16)

If additionally

(17) t 7→ t2f ′(t) is increasing for t > T
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then (15) and (16) are equivalent to

(18)

∫ 1/T

0

f ′(1/t)

t2
|1− σ̂(t)| dt < ∞.

The equivalence of (15) and (18) is contained in Boas [2, Theorem 3]
for f(t) = tγ with 0 < γ < 1 and f(t) = log+ t and has been shown for
f(t) = log+ log+ t and f(t) = (log+ t)2 by Elton and Yan [4, Lemma 2].

Proof of Lemma 5. We first show that (15) implies (16) for all θ > 0.
Setting θ = 1 then also yields the implication (15) ⇒ (18). We use

|1− σ̂(t)| ≤

∫
|1− exp(itx)| dσ(x) = 2

∫ ∣∣∣∣sin
t|x|

2

∣∣∣∣ dσ(x)

and Fubini’s theorem to estimate the left hand side of (16) from above

by
∫ 1

0

∫
r(x, y) dσ(x) dy where

r(x, y) := 2

∫ 1/T

0

f ′(1/t)

t2

∣∣∣∣sin
θyt|x|

2

∣∣∣∣ dt

≤ θy|x|

∫ 1/(T∨|x|)

0

f ′(1/t)

t
dt+ 2

∫ 1/T

1/(T∨|x|)

f ′(1/t)

t2
dt.(19)

Here we used | sin y| ≤ y ∧ 1 for y ≥ 0. To bound the first term in (19)
we prove that for all γ ∈]0, 1/T [,

(20)

∫ γ

0

f ′(1/t)

t
dt ≤

α

1− α
γf(1/γ).

To this end, first observe that the integral in (20) is finite because due
to (10) and (6) there is some finite c5 such that for t small, f ′(1/t)/t ≤
f(1/t) ≤ c5t

−α, which is integrable. Therefore for γ ց 0, the left hand
side (20) vanishes. Hence it suffices to show that the derivative with
respect to γ of the left hand side of (20) is dominated by the derivative
of the right hand side. This means that we have to check whether

f ′(1/γ)/γ ≤ α/(1− α)(f(1/γ)− f ′(1/γ)/γ)

which is equivalent to f ′(1/γ)/γ ≤ αf(1/γ). This is true due to (10)
and proves (20).
Consequently, the first term in (19) is less than c6θ

y|x|/(T∨|x|)f(T∨
|x|) ≤ c6θ

yf(T ∨ |x|) for some finite c6. Since the second term in (19)
equals

2[−f(1/t)]
1/T
1/(T∨|x|) = 2(f(T ∨ |x|)− f(T )) ≤ 2f(T ∨ |x|)
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we can therefore estimate the left side of (16) by
(∫ 1

0

2 + c6θ
y dy

)∫
f(T ∨ |x|) dσ(x)

which is finite by assumption (15).
To show that (16) implies (15) when 0 < θ < 1, we insert the estimate

|1− σ̂(t)| ≥ |1− Re σ̂(t)| =

∫
1− cos t|x| dσ(x)

into the assumption (16) to get by Fubini’s theorem

∞ >

∫ ∫ 1/T

0

f ′(1/t)

t2
φ(t|x|) dt dσ(x)

=

∫
1

|x|

∫ |x|/T

0

f ′(|x|/s)(|x|/s)2φ(s) ds dσ(x),(21)

where

φ(s) :=

∫ 1

0

1− cos θys dy = 1 + (ci (s)− ci (θs))/ log θ

and ci (s) := −
∫∞

s
cos(t)/t dt is the cosine integral function. Since

ci (s) → 0 as s → ∞ there is a positive constants c7 such that φ(s) ≥
1/2 for s > c7. Hence (21) can be estimated from below by

1

2

∫

|x|>c7T

∫ |x|/T

c7

f ′(|x|/s)|x|/s2 ds dσ(x)

=
1

2

∫

|x|>c7T

[−f(|x|/s)]s=|x|/T
s=c7

dσ(x)

=
1

2

∫

|x|>c7T

f(|x|/c7)− f(T ) dσ(x).

By the second statement of Lemma 4 with c = 1/c7 we conclude that
(15) holds.
Now we additionally assume (17). The proof of (18)⇒ (15) is similar

to the one of (16) ⇒ (15). Indeed, we proceed as above and arrive with
φ(s) := 1− cos s at (21), which we estimate from below by

(22)

∫

|x|>T

1

|x|

∫ |x|/T

1

f ′(|x|/s)(|x|/s)2(1− cos s) ds dσ(x).

Observe, that there is a constant c8 > 0 such that
∫ y

1

h(s)(1− cos s) ds ≥ c8

∫ y

1

h(s) ds
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for all nonnegative decreasing functions h and all y ≥ 1. Therefore,
since hx(s) := f ′(|x|/s)(|x|/s)2 is decreasing in s ∈ [1, |x|/T [ for any
|x| > T by assumption (17), (22) is greater than

c8

∫

|x|>T

1

|x|

∫ |x|/T

1

hx(s) ds dσ(x) = c8

∫

|x|>T

f(|x|)− f(T ) dσ(x),

which implies (15). �

5. The AR(1) case for sublinear functions

Throughout this section we assume that there is some a ∈ R with
0 < |a| < 1 such that an = an for all n ≥ 0. In this case X is the
random power series

(23) X =
∑

n≥0

anYn.

It is well known that X converges absolutely P-a.s., if and only if

(24) E[log+ |Y0|] < ∞,

see for instance Billingsley [1, Exercise 22.11] and Kawata [8, Theorem
14.4.1]. We denote by ν the common distribution of the Yn, n ∈ N, and
by µ the distribution of X. Then given a random variable Y which is
independent of X and distributed according to ν it is immediate from
(23) that X and aX + Y have the same distribution µ. This is the
simplest example where µ arises as stationary distribution of a linear
process, namely of the AR(1)-process which satisfies the recursion

Xn+1 = aXn + Yn (n ≥ 0).

In terms of the characteristic functions of ν and µ, stationarity of this
process means

(25) µ̂(t) = µ̂(at)ν̂(t) (t ∈ R).

The next lemma is the heart of the proof of Theorem 2. It relates the
local behaviors of ν̂ and µ̂ at the origin.

Lemma 6. Assume (24) and the existence of some 0 < |a| < 1 such
that an = an for all n ≥ 0. Let τ > 0 and let h ∈ C1(]0, τ ], [0,∞[) such
that h′(t) ≤ 0 for all t ∈]0, τ [. Furthermore assume that ν is symmetric
around 0. Then

(26)

∫ τ

0

h(t)

t
|1− ν̂(t)| dt < ∞
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if and only if

(27)

∫ τ

0

−h′(t)

∫ 1

0

|1− µ̂(|a|yt)| dy dt < ∞.

Note that the integrands in (26) and (27) are critical only at t = 0.

Proof. Without loss of generality we may assume that there is no neigh-
borhood of 0 in which h is constant because otherwise the statement is
true since (27) is fulfilled trivially and (26) follows from Lemma 5 (15)
⇔ (18) with f = log+ and assumption (24).
It follows directly from the symmetry of ν and (23) that µ is symmet-
ric around 0, too. Therefore both ν̂ and µ̂ are real valued continuous
and even functions which are at most 1 and achieve the value 1 at 0.
Consequently, there is some T ∈]0, τ ] such that ν̂(t) > 0 and µ̂(t) > 0
for t ∈ [−T, T ]. Since µ̂(x) → 1 as x → 0 we can represent 1− µ̂(|a|yt)
for y ≥ 0 as the telescopic sum

1− µ̂(|a|yt) =
∑

k≥0

µ̂(|a|k+y+1t)− µ̂(|a|k+yt).

For |t| < T , all the above summands are nonnegative since due to (25),

µ̂(|a|k+yt) = µ̂(a|a|k+yt)ν̂(|a|k+yt) ≤ µ̂(|a|k+y+1t),

where we used that µ̂ is even and that µ̂(|a|k+y+1t) ≥ 0 and ν̂(|a|k+yt) ≤
1. Consequently, for |t| < T by Fubini’s theorem,

∫ 1

0

1− µ̂(|a|yt) dy =
∑

k≥0

∫ k+1

k

µ̂(|a|y+1t)− µ̂(|a|yt) dy

=

∫ ∞

0

µ̂(|a|y+1t)− µ̂(|a|yt) dy =
1

− ln |a|

∫ t

0

µ̂(|a|s)− µ̂(s)

s
ds

=
1

− ln |a|

∫ t

0

µ̂(as)(1− ν̂(s))

s
ds,

where we used the symmetry of µ̂ again in the last step. Therefore,
(27) is equivalent to convergence of

∫ T

0

−h′(t)

∫ t

0

µ̂(as)(1− ν̂(s))

s
ds dt

=

∫ T

0

µ̂(as)(1− ν̂(s))

s

∫ T

s

−h′(t) dt ds

=

∫ T

0

h(s)

s
(1− ν̂(s))φ(s) ds,(28)
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where φ(s) := µ̂(as)(1 − h(T )/h(s)). Since h is not constant on ]0, T ]
but decreasing, φ(s) tends to some positive and finite number as s ց 0.
Hence we can omit φ(s) from (28) without changing the convergence
of this integral and arrive at the expression in (26). �

Lemma 7. Theorem 2 holds under the additional assumption that there
is some a ∈ R with 0 < |a| < 1 such that an = an for all n ≥ 0.

Proof. 1. Due to the comments about convergence of X at the begin-
ning of this section it only remains to show (5). Observe that, given f ,
g is determined by (7) only up to an additive constant and that adding
a constant c9 to g means to add c9 to E[g(|Y0|)]. Hence by choosing
c9 ≥ 0 large enough we may assume without loss of generality that

(29) f(T ) ≤ αg(T ).

2. Now we check the assumptions of Lemma 5 for g instead of f . It
only remains to show (6) and (17) for g.
For (6) for g, which is equivalent to (10) for g, we check that

(30) tg′(t) = f(t) ≤ αg(t) for t ≥ T .

By (29), this is true for t = T . Therefore, the inequality in (30) holds
if it holds after differentiating and multiplying both of its sides by t,
which gives tf ′(t) ≤ αtg′(t) = αf(t), which is true due to (10).
Finally, (17) for g is a consequence of t2g′(t) = tf(t) which is in-

creasing due to f, f ′ ≥ 0.
3. In this part of the proof we show (5) under the additional as-

sumption that Yn is symmetrically distributed around 0. By Lemma
5, E[f(|X|)] < ∞ is equivalent to (16) with (σ, θ) = (µ, |a|). This in
turn is equivalent to (27) with τ = 1/T and −h′(t) = f ′(1/t)t−2, that is
h(t) = f(1/t). The assumptions of Lemma 6 for this function h are ful-
filled since f is increasing and differentiable on ]T,∞[. Consequently,
by Lemma 6, E[f(|X|)] < ∞ is equivalent to

(31)

∫ 1/T

0

f(1/t)

t
|1− ν̂(t)| dt < ∞.

However, due to f(t) = tg′(t), (31) is equivalent to (18) with (g, ν)
instead of (f, σ). By the second part of the proof, Lemma 5 is applicable
again and shows that (31) is equivalent to E[g(|Y0|)] < ∞.
4. We now prove (5) for ν not necessarily symmetric. Let (X̃, (Ỹn)n)

be an independent copy of (X, (Yn)n). Due to the second part of the
proof we may apply Lemma 4 with f2 = g to see that E[g(|Y0|)] < ∞
is equivalent to E[g(|Y0 − Ỹ0|)] < ∞. However, Y0 − Ỹ0 is distributed
symmetrically around 0 and by absolute convergence in (23), X− X̃ =
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∑
n a

n(Yn− Ỹn). Therefore due to the third part of the proof, E[g(|Y0−

Ỹ0|)] < ∞ is equivalent to E[f(|X − X̃|)] < ∞. Finally, again by
Lemma 4 with f2 = f , this is equivalent to E[f(|X|)] < ∞. �

6. The general sublinear case

Proof of Theorem 2. Observe that due to (3) there are constants c10 <
∞ and 0 < a ≤ A < 1 such that an ≤ |an| ≤ c10A

n for all n with
an 6= 0. The absolute convergence of X then follows from

∑

n≥0

|anYn| ≤ c10
∑

n≥0

An|Yn|,

which is due to (24) P -a.s. finite as mentioned at the beginning of
Section 5.
In the proof of (5) we first handle the case in which an ≥ 0 and

Yn ≥ 0 P -a.s. for all n ≥ 0. In this case since f is increasing,

(32) E

[
f

(
∑

n≥0

anYn

)]
≤ E[f(X)] ≤ E

[
f

(
c10
∑

n≥0

AnYn

)]
.

Due to the second part of Lemma 4 one can omit the constant c10 in
(32) without changing the property of the right-most term in (32) to
be finite or infinite. Lemma 7 therefore shows that the three terms in
(32) are either all finite or all infinite, depending on whether E[g(|Y0|)]
is finite or not. This proves the statement for nonnegative an and
Yn. Hence, the general statement will follow once we have shown the
equivalence

(33) E[f(|X|)] < ∞ if and only if E

[
f

(
∑

n≥0

|an||Yn|

)]
< ∞,

which we shall prove now. The if-part is immediate from the triangle
inequality and the monotonicity of f . For the converse we assume
E[f(|X|)] < ∞ and proceed similarly as in the proof of Lemma 4 as
follows. We abbreviate

U :=
∑

n≥0

(anYn)
+ and V :=

∑

n≥0

(anYn)
−,

where Z+ := max{Z, 0} and Z− := −min{Z, 0}. Then, using absolute
convergence of X and the monotonicity of f , we get that for any γ > 0,

(34) ∞ > E[f(|X|)] = E[f(|U − V |)] ≥ E [f(U − γ)1V≤γ≤U ] .

Now note that both f(U − γ)1γ≤U and 1V≤γ are increasing functions
of the independent random variables (anYn)n. Therefore, by the FKG
inequality for product measures (see e.g. [10, Theorem 5.2.2.(d)] for
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finite products and [7, Theorem 2.4] for the generalization to infi-
nite products) the right most term in (34) is greater than or equal
to E [f(U − γ)1γ≤U ]P [V ≤ γ]. Consequently, E[f(|U − γ|)] < ∞ for
some large γ. Applying the first part of Lemma 4 to Z1 = U − γ and
Z2 = γ, we get E[f(U)] < ∞. Analogously, E[f(V )] < ∞. Another
application of the first part of Lemma 4, this time with Z1 = U and
Z2 = V , yields E[f(U + V )] < ∞, which is the statement on the right
hand side of (33). This completes the proof of (33). �
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[5] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling

Extremal Events for Insurance and Finance. Springer, Berlin.
[6] Goldie, Ch.M. (1991). Implicit renewal theory and tails of solutions of ran-

dom equations. Ann. Appl. Probab. 1, no. 1, 126–166
[7] Grimmett, G.R. (1989). Percolation. Springer, New York.
[8] Kawata, T. (1972). Fourier Analysis in Probability Theory. Academic Press,

New York.
[9] Mikosch, T. and Samorodnitsky, G. (2000). The supremum of a negative

drift random walk with dependent heavy-tailed steps. Ann. Appl. Probab. 10,
no. 3, 1025–1064

[10] Tong, Y.L. (1980). Probability Inequalities in Multivariate Distributions.Aca-
demic Press, New York.

[11] Vervaat, W. (1979). On a stochastic difference equation and a representation
of non-negative infinitely divisible random variables. Adv. in Appl. Probab. 11,
no. 4, 750–783

Department of Electrical Engineering, Technion, Haifa 32000, Is-
rael.

Current Address: Department of Mathematics, Stanford Univer-
sity, Stanford, CA 94305, USA. E-Mail: zerner@stanford.edu


